1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217 | try:
from datetime import timedelta
from datetime import datetime
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.postgres_operator import PostgresOperator
from pandas.io.json import json_normalize
import pandas as pd
import json
import requests
import numpy as np
import psycopg2
import sqlalchemy
from sqlalchemy import create_engine
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "keexiansuen@drow.cloud",
"password": "c3UxMTk5a3ghIQ=="
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
# return 'DLLM{}'.format(response)
def getSheetData(token , sheetId):
response = requests.get(
url=f"{dRoW_api_end_url}/api/sheets/{sheetId}?with_records=true&fields=",
headers={
"x-access-token": f"Bearer {token}",
}
)
sheet = json.loads(response.text)
headers = sheet['header']
record = sheet['record']
dataToExtract=[]
for d in record:
objectToPush = {}
for v in d['values']:
for c in headers:
colNameToExtract = c['colName']
if v['colName'] == colNameToExtract:
# # print(v)
if v.get('multValue') != None:
if v['multValue'] == True:
if v['colType'] == 'Table':
tObjectArray = []
for t in v['tableValue']:
tObjectToPush = {}
for s in t['subValues']:
tObjectToPush[s['colName']] = s.value
tObjectArray.push(tObjectToPush)
else:
objectToPush[v['colName']] = v['valueArray']
else:
if v.get('value') != None:
if v.get('value') == 'NA':
objectToPush[v['colName']] = None
else:
objectToPush[v['colName']] = v['value']
else:
objectToPush[v['colName']] = None
else:
if v.get('value') != None:
if v.get('value') == 'NA':
objectToPush[v['colName']] = None
else:
objectToPush[v['colName']] = v['value']
else:
objectToPush[v['colName']] = None
dataToExtract.append(objectToPush)
return dataToExtract
def getPaymentStatistics(**context):
token = context.get("ti").xcom_pull(key="token")
PaymentData = getSheetData(token, "69045bd4e7623895abe44568")
FinalStatsData = getSheetData(token, "69045f64c641945865aafd76")
# PostgreSQL Database Connection Parameters
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
dbUserName = 'dRowAdmin'
dbUserPassword = 'drowsuper'
database = 'drowDateWareHouse'
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
db = create_engine(conn_string)
conn = db.connect()
latest_ip = 0
with conn as conn:
df = pd.DataFrame()
Mappings = {}
for x in PaymentData:
df_nested_list = json_normalize(x)
latest_ip = df_nested_list['IP No.'].max()
df = df.append(df_nested_list, ignore_index=True)
df.rename(columns=Mappings, inplace=True)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
print("Payment Statistics df:", df)
df.to_sql('ssm519_payment_statistics', con=conn, if_exists='replace', index=False)
df = pd.DataFrame()
Mappings = {}
print("Latest IP No.:", latest_ip)
for x in FinalStatsData:
df_nested_list = json_normalize(x)
df = df.append(df_nested_list, ignore_index=True)
df.rename(columns=Mappings, inplace=True)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
df['Contract_Number'] = 'SSM519'
df['Latest_IP_No'] = latest_ip
main_df = pd.read_sql('SELECT * FROM scc_final_stats', con=conn)
# Remove the old data for this contract number
main_df = main_df[main_df['Contract_Number'] != 'SSM519']
# Add the new data
main_df = pd.concat([main_df, df], ignore_index=True)
# Replace the SQL table with updated data
main_df.to_sql('scc_final_stats', con=conn, if_exists='replace', index=False)
def getFinalStats(**context):
token = context.get("ti").xcom_pull(key="token")
FinalStatsData = getSheetData(token, "69045f64c641945865aafd76")
# PostgreSQL Database Connection Parameters
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
dbUserName = 'dRowAdmin'
dbUserPassword = 'drowsuper'
database = 'drowDateWareHouse'
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
db = create_engine(conn_string)
conn = db.connect()
df = pd.DataFrame()
Mappings = {}
with conn as conn:
for x in FinalStatsData:
df_nested_list = json_normalize(x)
df = df.append(df_nested_list, ignore_index=True)
df.rename(columns=Mappings, inplace=True)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
df['Contract_Number'] = 'SSM519'
main_df = pd.read_sql('SELECT * FROM scc_final_stats', con=conn)
# Remove the old data for this contract number
main_df = main_df[main_df['Contract_Number'] != 'SSM519']
# Add the new data
main_df = pd.concat([main_df, df], ignore_index=True)
# Replace the SQL table with updated data
main_df.to_sql('scc_final_stats', con=conn, if_exists='replace', index=False)
# # Table doesn’t exist yet — create it
# df.to_sql('scc_final_stats', con=conn, if_exists='replace', index=False)
# print("Final Statistics df:", df)
with DAG(
dag_id="ssm519-scc",
schedule_interval="0 7,15 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2023, 1, 17)
},
catchup=False) as f:
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
getPaymentStatistics = PythonOperator(
task_id="getPaymentStatistics",
python_callable=getPaymentStatistics,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
# getFinalStats = PythonOperator(
# task_id="getFinalStats",
# python_callable=getFinalStats,
# op_kwargs={"name": "Dylan"},
# provide_context=True,
# )
# getDrowToken >> getPaymentStatistics >> getFinalStats
getDrowToken >> getPaymentStatistics
|