1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418 | try:
from datetime import timedelta, datetime
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import psycopg2
from sqlalchemy import create_engine
#print("All Dag moudules are sucessfully imported")
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://uat2.drow.cloud"
def getDrowToken(**context):
# response = SimpleHttpOperator(
# task_id="getDrowToken",
# http_conn_id="getDrowToken",
# endpoint="https://uat2.drow.cloud/api/auth/authenticate",
# method="POST",
# data={
# "username": "icwp2@drow.cloud",
# "password": "dGVzdDAxQHRlc3QuY29t"
# },
# xcom_push=True,
# )
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
# return 'DLLM{}'.format(response)
def getMongoDB(**context):
token = context.get("ti").xcom_pull(key="token")
response = requests.get(
url=f"{dRoW_api_end_url}/api/module/nd201907/document-data?from=1665845580212&documentId=5fc46755b52b8f7ffa7b5ff7",
headers={
"x-access-token": f"Bearer {token}",
"ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
}
)
#print('got_data')
RISC_Data = json.loads(response.text)
Mapping= {
"A01 Date" : "a01_date",
# "1. General_compelete": "general_complete",
# "1. General_incompelete": "general_incomplete",
# "2. Flammable Liquids / Gases_compelete": "flammable_liquids_gases_complete",
# "2. Flammable Liquids / Gases_incompelete": "flammable_liquids_gases_incomplete",
# "3. Hazardous Substances_compelete": "general_complete",
# "3. Hazardous Substances_incompelete": "general_incomplete",
}
# safety_cats = [
# '2. Reportable Accident',
# '12. Unsafe conditions identified during inspections',
# '13. Near-miss Reports',
# '14. Incident Reports',
# '15. LD/MD Improvement and Suspension Notice',
# '16. Safety Convictions Records'
# ]
#print('start transform')
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
# #cursor Type
# cusrsorType = pymysql.cursors.DictCursor
#create_engine('mysql+mysqldb://root:password@localhost:3306/mydbname', echo = False)
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
# df = context.get("ti").xcom_pull(key="InsertData")
# print(df)
# conn_string = 'postgres://user:password@host/data1'
db = create_engine(conn_string)
conn = db.connect()
#print('db connected')
with conn as conn:
df3=pd.read_sql("SELECT * FROM public.nd201907_site_diary_activities_general_count;",
conn,
parse_dates=["a01_date"])
df = pd.DataFrame()
_df = pd.DataFrame()
for x in RISC_Data:
df_nested_list = json_normalize(x['data'])
#print('process 1')
df2 = df_nested_list.reindex(columns=Mapping.keys())
date = datetime.strptime(x['data']['A01 Date'], '%Y-%m-%dT%H:%M:%S.%f%z')
no_of_site_activities = df3.query('a01_date == @date')
# if(not pd.isna(no_of_site_activities['Count'][0])):
if(len(no_of_site_activities['Count'])!= 0):
df2['no_of_site_activities'] = no_of_site_activities['Count'].iloc[0]
else:
df2['no_of_site_activities'] = 0
# df2=df_nested_list
if (datetime.strptime(x['data']['A01 Date'], '%Y-%m-%dT%H:%M:%S.%f%z') < datetime.strptime('2022-10-01T00:00:00.000Z', '%Y-%m-%dT%H:%M:%S.%f%z')):
df2['complete_or_incomplete'] = 'complete'
else :
if x['Status'] == 'completed' :
df2['complete_or_incomplete'] = 'complete'
else:
df2['complete_or_incomplete'] = 'incomplete'
if len(x['ApproveLogSummary']) > 0:
pmd_sign_date = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="D : Sent to SupD"]
contractor_sign_date = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="C : Sent to Contractor"]
supervisor_sign_date = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : IOW Vet SD"]
if len(pmd_sign_date) > 0 and ('to' in pmd_sign_date[len(pmd_sign_date)-1]):
pmd_receive_time = pmd_sign_date[len(pmd_sign_date)-1]['from']
pmd_sign_time = pmd_sign_date[len(pmd_sign_date)-1]['to']
df2['pmd_sign_time'] = pmd_sign_date[len(pmd_sign_date)-1]['to']
df2['Overdue_PMD']= (pmd_sign_time != '' and pmd_receive_time != '' and (datetime.strptime(pmd_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') - datetime.strptime(pmd_receive_time, '%Y-%m-%dT%H:%M:%S.%f%z')).days > 7)
else:
df2['pmd_sign_time'] = None
df2['Overdue_PMD'] = None
if len(contractor_sign_date) > 0 and ('to' in contractor_sign_date[len(contractor_sign_date)-1]):
cr_receive_time = contractor_sign_date[len(contractor_sign_date)-1]['from']
cr_sign_time = contractor_sign_date[len(contractor_sign_date)-1]['to']
df2['cr_sign_time'] = contractor_sign_date[len(contractor_sign_date)-1]['to']
df2['Overdue_CR']= (cr_sign_time != '' and cr_receive_time != '' and (datetime.strptime(cr_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') - datetime.strptime(cr_receive_time, '%Y-%m-%dT%H:%M:%S.%f%z')).days > 7)
else:
df2['cr_sign_time'] = None
df2['Overdue_CR'] = None
if len(supervisor_sign_date) > 0 and ('to' in supervisor_sign_date[len(supervisor_sign_date)-1]):
sup_receive_time = supervisor_sign_date[len(supervisor_sign_date)-1]['from']
sup_sign_time = supervisor_sign_date[len(supervisor_sign_date)-1]['to']
df2['sup_sign_time'] = supervisor_sign_date[len(supervisor_sign_date)-1]['to']
df2['Overdue_SUP']= (sup_sign_time != '' and sup_receive_time != '' and (datetime.strptime(sup_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') - datetime.strptime(sup_receive_time, '%Y-%m-%dT%H:%M:%S.%f%z')).days > 7)
else:
df2['sup_sign_time'] = None
df2['Overdue_SUP'] = None
#print('process 2')
#print('loading into DB')
# if len(x['data']["A04 Contractor's Management Team"]) > 0:
# for c in x['data']["A04 Contractor's Management Team"]:
# labourName = str(c['A04.1 Ctr Post'])
# labourNum = 0
# if ('A04.2 Ctr No.' in c) and not c['A04.2 Ctr No.'] is None:
# labourNum = c['A04.2 Ctr No.']
# else:
# labourNum = 0
# if not ((str('A04.1 Ctr Post' + '_' + labourName)) in df2.columns):
# df2.at[0, str('A04.1 Ctr Post' + '_' + labourName)] = labourNum
# else:
# df2.at[0, str('A04.1 Ctr Post' + '_' + labourName)] = df2[str('A04.1 Ctr Post' + '_' + labourName)].values[0] + labourNum
df6 = df_nested_list[Mapping.keys()]
df4 = pd.DataFrame()
if len(x['data']["A04 Contractor's Management Team"]) > 0:
_df3 = df6.copy()
for c in x['data']["A04 Contractor's Management Team"]:
labourName = str(c['A04.1 Ctr Post'])
labourNum = 0
if ('A04.2 Ctr No.' in c) and not c['A04.2 Ctr No.'] is None:
labourNum = c['A04.2 Ctr No.']
else:
labourNum = 0
_df3['contractor_management_post_name'] = labourName
_df3['contractor_management_number'] = labourNum
df4 = df4.append(_df3)
df2.rename(columns=Mapping, inplace=True)
df4.rename(columns=Mapping, inplace=True)
df2.columns = df2.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')
df4.columns = df4.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')
# df2.drop(columns=['2_Reportable_Accident', '16_Safety_Convictions_Records', '14_Incident_Reports', '15_LD_MD_Improvement_and_Suspension_Notice', '13_Near-miss_Reports','12_Unsafe_conditions_identified_during_inspections'], axis=1)
df = df.append(df2)
_df = _df.append(df4)
# _df = _df.append(df4)
df['a01_date']=df['a01_date'].apply(pd.to_datetime)
_df['a01_date']=_df['a01_date'].apply(pd.to_datetime)
df.to_sql('nd201907_site_diary_general', con=conn, if_exists='replace', index= False)
_df.to_sql('nd201907_site_diary_general_contractor_management', con=conn, if_exists='replace', index= False)
#print("success")
# context["ti"].xcom_push(key="dataResponse", value=response.text)
# def reformData(**context):
# dataResponse = context.get("ti").xcom_pull(key="dataResponse")
# RISC_Data = json.loads(dataResponse)
# Mapping= {"A10 - Request Submission Date Time" : "a10_request_submission_date_time",
# 'C02 - Survey Checked on Date Time' : 'c02_inspect_on_date_time',
# # 'C02 - Survey Checked on Date Time' : 'Inspection/Survey Inspection date',
# "E01 - Received on behalf of Contractor on Date Time" : "e01_received_on_behalf_of_contractor_on_date_time",
# 'A01a - Request No. Revision': "a01a_request_no_revision",
# "A01 - Request No.": "a01_request_no",
# "C12 Time Pass to Senior or Contractor" : 'c12_time_pass_to_senior_or_contractor',
# "D01 - Countersigned on Date Time" : 'd01_countersigned_on_date_time',
# 'C03 - Approval given?' : "c03_approval_given",
# "A01b - Work Category" : "a01b_work_category"
# # 'C12 Time Pass to Senior or Contractor' : 'Sign time by manager'
# }
# # df = pd.DataFrame.from_dict([RISC_Data['data'],RISC_Data['data']])
# # print(df)
# df_nested_list = json_normalize(
# RISC_Data['data']
# )
# print (df_nested_list)
# df2 = df_nested_list.reindex(columns=Mapping.keys())
# df2["request_no"] = df2["A01 - Request No."].astype(str) + df2["A01a - Request No. Revision"]
# print (df2)
# df2.rename(columns=Mapping, inplace=True)
# # df2.to_sql('table_temp', engine, if_exists='replace')
# context["ti"].xcom_push(key="InsertData", value=df2)
# insert_data_sql_query = """
# """
# return "Done"
# def insertData(**context):
# supeate a connection object
# Host of the MySQL database server (or ip)
# id SERIAL
# create_table_sql_query = """
# CREATE TABLE IF NOT EXISTS nd201907_cleansing (
# f2_checked_by_supd_on_date TIMESTAMP,
# a01a_inspection_date TIMESTAMP,
# d4_submission_date TIMESTAMP,
# a2_daily_or_weekly VARCHAR (100),
# report_name VARCHAR (100),
# report_complete_or_incomplete VARCHAR (100),
# nc_report BOOLEAN,
# complete_time_in_days NUMERIC(10,2)
# );
# """
# create_table_sql_query = """
# CREATE TABLE IF NOT EXISTS nd201907_risc (id INT NOT NULL,
# a10_request_submission_date_time TIMESTAMP,
# b01_request_received_date_time TIMESTAMP,
# c02_inspect_or_survey_on_date_time TIMESTAMP,
# a05_proposed_inspection_or_survey_date_time TIMESTAMP,
# e01_received_on_behalf_of_contractor_on_date_time TIMESTAMP,
# a01a_request_no_revision VARCHAR (50),
# a01_request_no VARCHAR (50),
# c12_time_pass_to_senior_or_contractor TIMESTAMP,
# d01_countersigned_on_date_time TIMESTAMP,
# c03_approval_given VARCHAR (50),
# request_no VARCHAR (50),
# a01b_work_category VARCHAR (50),
# nc_report BOOLEAN,
# urgent_report BOOLEAN,
# elapsed_time NUMERIC(10,2),
# overdue_report BOOLEAN,
# delayed_approval_report BOOLEAN,
# fail_in_first_inspection BOOLEAN,
# complete_incomplete_outstanding_report VARCHAR(50)
# );
# """
# */2 * * * * Execute every two minute
with DAG(
dag_id="nd201907_site_diary_general",
schedule_interval="0 4,10,16,22 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2023, 1, 17)
},
catchup=False) as f:
getMongoDB = PythonOperator(
task_id="getMongoDB",
python_callable=getMongoDB,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
# reformData = PythonOperator(
# task_id="reformData",
# python_callable=reformData,
# provide_context=True,
# # op_kwargs={"name": "Dylan"}
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
# insertData = PythonOperator(
# task_id="insetDateToPG",
# python_callable=insertData,
# provide_context=True,
# # op_kwargs={"name": "Dylan"}
# )
# create_table = PostgresOperator(
# sql = create_table_sql_query,
# task_id = "create_table_task",
# postgres_conn_id = "postgres_rds",
# )
# insert_data = PostgresOperator(
# sql = insert_data_sql_query,
# task_id = "insertData_sql_query_task",
# postgres_conn_id = "postgres_rds",
# )
# getDrowToken >> getMongoDB >> reformData >> create_table
# create_table >> getDrowToken >> getMongoDB >> reformData >> insertData
# getDrowToken >> getMongoDB >> reformData >> insertData
# create_table >>
getDrowToken >> getMongoDB
# if df2['F2. 監理代表 Checked by SupD on Date'].isnull().bool():
# df2['report_complete_or_incomplete'] = 'incomplete'
# else:
# df2['report_complete_or_incomplete'] = 'complete'
# if not df2['F2. 監理代表 Checked by SupD on Date'].isnull().bool() and not df2['D4 Submission Date'].isnull().bool() and (df2["F2. 監理代表 Checked by SupD on Date"].astype('datetime64[ns]') < df2["D4 Submission Date"].astype('datetime64[ns]')).bool():
# df2['nc_report'] = True
# else:
# df2['nc_report'] = False
# if (not df2['F2. 監理代表 Checked by SupD on Date'].isnull().bool() and not df2['A1a 巡查日期 Inspection Date'].isnull().bool()):
# df2['complete_time_in_days'] = (((df2['F2. 監理代表 Checked by SupD on Date'].astype('datetime64[ns]') -
# df2['A1a 巡查日期 Inspection Date'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
# if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
# df2['complete_time_in_days'] = 0
# else:
# df2['complete_time_in_days'] = 0
# if(not df2["C02 - Survey Checked on Date Time"].isnull().bool() and not df2["A10 - Request Submission Date Time"].isnull().bool() and ((df2["C02 - Survey Checked on Date Time"].astype('datetime64[ns]') < df2["A10 - Request Submission Date Time"].astype('datetime64[ns]')).bool())):
# print((df2["C02 - Survey Checked on Date Time"].astype('datetime64[ns]') < df2["A10 - Request Submission Date Time"].astype('datetime64[ns]')))
# else:
# print((df2["C02 - Survey Checked on Date Time"].astype('datetime64[ns]') < df2["A10 - Request Submission Date Time"].astype('datetime64[ns]')))
# if (not df2["C02 - Survey Checked on Date Time"].isnull().bool() and (not df2["A10 - Request Submission Date Time"].isnull().bool()) and (df2["C02 - Survey Checked on Date Time"].astype('datetime64[ns]') < df2["A10 - Request Submission Date Time"].astype('datetime64[ns]')).bool()):
# df2['nc_report'] = True
# else:
# df2['nc_report'] = False
# if (not df2["C02 - Survey Checked on Date Time"].isnull().bool() and not df2["A10 - Request Submission Date Time"].isnull().bool() and (((df2["C02 - Survey Checked on Date Time"].astype('datetime64[ns]') - df2["A10 - Request Submission Date Time"].astype('datetime64[ns]'))) < pd.Timedelta(24, unit='h')).bool()):
# df2['urgent_report'] = True
# else:
# df2['urgent_report'] = False
# if (not df2['E01 - Received on behalf of Contractor on Date Time'].isnull().bool() and not df2['A10 - Request Submission Date Time'].isnull().bool()):
# df2['elapsed_time'] = (((df2['E01 - Received on behalf of Contractor on Date Time'].astype('datetime64[ns]') -
# df2['A10 - Request Submission Date Time'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
# if df2['elapsed_time'].isnull().bool() or df2['elapsed_time'].lt(0).bool():
# df2['elapsed_time'] = 0
# else:
# df2['elapsed_time'] = 0
# if (not df2["C02 - Survey Checked on Date Time"].isnull().bool() and not df2["D01 - Countersigned on Date Time"].isnull().bool() and (((df2["D01 - Countersigned on Date Time"].astype('datetime64[ns]') - df2["C02 - Survey Checked on Date Time"].astype('datetime64[ns]')))>= pd.Timedelta(24, unit='h')).bool()):
# df2['overdue_report'] = True
# else:
# df2['overdue_report'] = False
# if (not df2["C02 - Survey Checked on Date Time"].isnull().bool() and not df2["C12 Time Pass to Senior or Contractor"].isnull().bool() and (((df2["C12 Time Pass to Senior or Contractor"].astype('datetime64[ns]') - df2["C02 - Survey Checked on Date Time"].astype('datetime64[ns]')))>= pd.Timedelta(24, unit='h')).bool()):
# df2['delayed_approval_report'] = True
# else:
# df2['delayed_approval_report'] = False
# if ((df2['A01a - Request No. Revision']=="-A").bool()):
# df2['fail_in_first_inspection'] = True
# else:
# df2['fail_in_first_inspection'] = False
# if (not df2["C12 Time Pass to Senior or Contractor"].isnull().bool() and not df2["C02 - Survey Checked on Date Time"].isnull().bool() and not df2["E01 - Received on behalf of Contractor on Date Time"].isnull().bool()):
# df2['complete_incomplete_outstanding_report'] = 'complete'
# elif ((df2["C12 Time Pass to Senior or Contractor"].isnull().bool() or df2["E01 - Received on behalf of Contractor on Date Time"].isnull().bool()) and not df2["C02 - Survey Checked on Date Time"].isnull().bool()):
# df2['complete_incomplete_outstanding_report'] = 'in-complete'
# elif ((not df2["C12 Time Pass to Senior or Contractor"].isnull().bool() or df2["E01 - Received on behalf of Contractor on Date Time"].isnull().bool()) and df2["C02 - Survey Checked on Date Time"].isnull().bool()):
# df2['complete_incomplete_outstanding_report'] = 'outstanding'
# else:
# df2['complete_incomplete_outstanding_report'] = 'outstanding'
|