DAG: dc202312_icwp_site_diary_general

schedule: 20 15 * * *


dc202312_icwp_site_diary_general

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
try:

    from datetime import timedelta, datetime
    from airflow import DAG
    
    from airflow.operators.python_operator import PythonOperator
    from airflow.operators.http_operator import SimpleHttpOperator
    from datetime import datetime
    from pandas.io.json import json_normalize
    from airflow.operators.postgres_operator import PostgresOperator

    import pandas as pd
    import json
    import requests
    import numpy as np

    import psycopg2
    from sqlalchemy import create_engine

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://drow.cloud"

def getDrowToken(**context):
    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
        "username": "icwp2@drow.cloud",
        "password": "dGVzdDAxQHRlc3QuY29t"
    }).json()
    context["ti"].xcom_push(key="token", value=response['token'])


def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
        url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/657fb9a2fde5354c3626cc11?export_type=0",
        headers={
            "x-access-token": f"Bearer {token}",
            "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
        }
    )
    RISC_Data = json.loads(response.text)
    Mapping= {
        "A01 Date" : "a01_date",
    }

    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  
    # User name of the database server
    dbUserName            = 'dRowAdmin'  
    # Password for the database user
    dbUserPassword        = 'drowsuper'  
    # Name of the database 
    database              = 'drowDateWareHouse'
    # Character set
    charSet               = "utf8mb4"  
    port                  = "5432"

    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df3=pd.read_sql("SELECT * FROM public.site_diary_activities_general_count_dc202312;",
            conn,
            parse_dates=["a01_date"])
        df = pd.DataFrame()
        _df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])
            df2 = df_nested_list.reindex(columns=Mapping.keys())
            if x['data']['A01 Date']is not None:
                date = datetime.strptime(x['data']['A01 Date'], '%Y-%m-%dT%H:%M:%S.%f%z')
            if x['data']['A01 Date'] is None:
                date = datetime.strptime('2022-09-22T00:00:00.000Z', '%Y-%m-%dT%H:%M:%S.%f%z')

            no_of_site_activities = df3.query('a01_date == @date')
            if(len(no_of_site_activities['Count'])!= 0):
                df2['no_of_site_activities'] = no_of_site_activities['Count'].iloc[0]
            else:
                df2['no_of_site_activities'] = 0

            if (date < datetime.strptime('2022-10-01T00:00:00.000Z', '%Y-%m-%dT%H:%M:%S.%f%z')):
                df2['complete_or_incomplete'] = 'complete'
            else :
                if x['Status'] == 'Z : SD Completed':
                    df2['complete_or_incomplete'] = 'complete'
                else:
                    df2['complete_or_incomplete'] = 'incomplete'

            if len(x['ApproveLogSummary']) > 0:
                pmd_sign_date = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="D : Sign CRE/SRE"]
                contractor_sign_date = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="C1 : Check(Contactor Engineer)"]
                supervisor_sign_date = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : SIOW Sign (Building Team)"]

            if len(pmd_sign_date) > 0 and ('to' in pmd_sign_date[len(pmd_sign_date)-1]):
                pmd_receive_time = pmd_sign_date[len(pmd_sign_date)-1]['from']
                pmd_sign_time = pmd_sign_date[len(pmd_sign_date)-1]['to']
                df2['pmd_sign_time'] = pmd_sign_date[len(pmd_sign_date)-1]['to']
                df2['Overdue_PMD']= (pmd_sign_time != '' and pmd_receive_time != '' and (datetime.strptime(pmd_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') -  datetime.strptime(pmd_receive_time, '%Y-%m-%dT%H:%M:%S.%f%z')).days > 7)
                df2['pmd_sign_time'] = datetime.strptime(pmd_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') + pd.Timedelta(8, unit='h')
            else: 
                df2['pmd_sign_time'] = None
                df2['Overdue_PMD'] = None

            if len(contractor_sign_date) > 0 and ('to' in contractor_sign_date[len(contractor_sign_date)-1]):
                cr_receive_time = contractor_sign_date[len(contractor_sign_date)-1]['from']
                cr_sign_time = contractor_sign_date[len(contractor_sign_date)-1]['to']
                df2['cr_sign_time'] = contractor_sign_date[len(contractor_sign_date)-1]['to']
                df2['Overdue_CR']= (cr_sign_time != '' and cr_receive_time != '' and (datetime.strptime(cr_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') -  datetime.strptime(cr_receive_time, '%Y-%m-%dT%H:%M:%S.%f%z')).days > 7)
                df2['cr_sign_time'] = datetime.strptime(cr_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') + pd.Timedelta(8, unit='h')
            else: 
                df2['cr_sign_time'] = None
                df2['Overdue_CR'] = None

            if len(supervisor_sign_date) > 0 and ('to' in supervisor_sign_date[len(supervisor_sign_date)-1]):
                sup_receive_time = supervisor_sign_date[len(supervisor_sign_date)-1]['from']
                sup_sign_time = supervisor_sign_date[len(supervisor_sign_date)-1]['to']
                df2['sup_sign_time'] = supervisor_sign_date[len(supervisor_sign_date)-1]['to']
                df2['Overdue_SUP']= (sup_sign_time != '' and sup_receive_time != '' and (datetime.strptime(sup_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') -  datetime.strptime(sup_receive_time, '%Y-%m-%dT%H:%M:%S.%f%z')).days > 7)
                df2['sup_sign_time'] = datetime.strptime(sup_sign_time, '%Y-%m-%dT%H:%M:%S.%f%z') + pd.Timedelta(8, unit='h')
            else: 
                df2['sup_sign_time'] = None
                df2['Overdue_SUP'] = None
            
            df6 = df_nested_list[Mapping.keys()]
            df4 = pd.DataFrame()
            if "A04 Contractor's Site Staff" in x['data'] and len(x['data']["A04 Contractor's Site Staff"]) > 0:
                _df3 = df6.copy()
                for c in x['data']["A04 Contractor's Site Staff"]:
                    labourName = str(c["A04.1 Contractor's Site Staff"])
                    labourNum = 0
                    if ("A04.3 Contractor's Site Staff No" in c) and not c["A04.3 Contractor's Site Staff No"] is None:
                        labourNum = c["A04.3 Contractor's Site Staff No"]
                    else:
                        labourNum = 0
                    _df3['contractor_management_post_name'] = labourName
                    _df3['contractor_management_number'] = labourNum
                    df4 = df4.append(_df3)
            
            df2.rename(columns=Mapping, inplace=True)
            df4.rename(columns=Mapping, inplace=True)
            df2.columns = df2.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')
            df4.columns = df4.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')

            df = df.append(df2)
            _df = _df.append(df4) 

        df['a01_date']=df['a01_date'].apply(pd.to_datetime)
        _df['a01_date']=_df['a01_date'].apply(pd.to_datetime)

        df.to_sql('site_diary_general_dc202312', con=conn, if_exists='replace', index= False)
        _df.to_sql('site_diary_general_contractor_management_dc202312', con=conn, if_exists='replace', index= False)

# */2 * * * * Execute every two minute 
with DAG(
        dag_id="dc202312_icwp_site_diary_general",
        schedule_interval="20 15 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2023, 1, 17)
        },
        catchup=False) as f:
    
    getMongoDB = PythonOperator(
        task_id="getMongoDB",
        python_callable=getMongoDB,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
        # op_kwargs={"name": "Dylan"}
    )

getDrowToken >> getMongoDB