1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236 | try:
from datetime import timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import psycopg2
from sqlalchemy import create_engine
#print("All Dag moudules are sucessfully imported")
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
# response = SimpleHttpOperator(
# task_id="getDrowToken",
# http_conn_id="getDrowToken",
# endpoint="https://uat2.drow.cloud/api/auth/authenticate",
# method="POST",
# data={
# "username": "icwp2@drow.cloud",
# "password": "dGVzdDAxQHRlc3QuY29t"
# },
# xcom_push=True,
# )
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
# return 'DLLM{}'.format(response)
def getMongoDB(**context):
token = context.get("ti").xcom_pull(key="token")
response = requests.get(
url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/62f260f404c2620c9f6409fd?export_type=0",
headers={
"x-access-token": f"Bearer {token}",
"ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
}
)
#print('got_data')
RISC_Data = json.loads(response.text)
Mapping= {
# "f2_checked_by_supd_on_date" : "f2_checked_by_supd_on_date",
"Date of Inspection" : "a01a_inspection_date",
# "D4 Submission Date" : "d4_submission_date",
}
#print('start transform')
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
# #cursor Type
# cusrsorType = pymysql.cursors.DictCursor
#create_engine('mysql+mysqldb://root:password@localhost:3306/mydbname', echo = False)
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
# df = context.get("ti").xcom_pull(key="InsertData")
# print(df)
# conn_string = 'postgres://user:password@host/data1'
db = create_engine(conn_string)
conn = db.connect()
#print('db connected')
with conn as conn:
df = pd.DataFrame()
for x in RISC_Data:
#print(x)
df_nested_list = json_normalize(x['data'])
#print('process 1')
# df2["a10_request_submission_date_time"] = request_date
df2 = df_nested_list.reindex(columns=Mapping.keys())
if len(x['ApproveLogSummary']) > 0:
# request_date = pd.to_datetime(df2["C1 - Inspect on Date Time"]) - pd.Timedelta(days=1)
request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : RSS check"]
if len(request_data) > 0 and 'from' in request_data[-1]:
df2['f2_checked_by_supd_on_date'] = request_data[-1]['from']
else:
df2['f2_checked_by_supd_on_date'] = None
if len(request_data) > 0 and 'to' in request_data[-1]:
df2['d4_submission_date'] = request_data[-1]['to']
else:
df2['d4_submission_date'] = None
else:
df2['f2_checked_by_supd_on_date'] = None
df2['d4_submission_date'] = None
df2["report_name"] = df2["Date of Inspection"].astype(str).str[:10]
if len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="Z : END"])>0 or len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="C : Contractor Acknowledge and Archive"])>0:
df2['report_complete_or_incomplete'] = 'complete'
else:
df2['report_complete_or_incomplete'] = 'incomplete'
if 'data' in x and isinstance(x['data'], dict):
for key in x['data']:
if 'Checklist' in key:
total_report = 0
total_x = 0
for item in x['data'][key]:
for item_key in item:
if item[item_key] == 'N/A' or item[item_key] == '✓':
total_report += 1
if item[item_key] == '✘':
total_x += 1
total_report += 1
df2['nc_report_item'] = total_x
df2['total_report_item'] = total_report
# if not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['d4_submission_date'].isnull().bool() and (df2["f2_checked_by_supd_on_date"].astype('datetime64[ns]') > df2["d4_submission_date"].astype('datetime64[ns]')).bool():
# df2['nc_report'] = True
# else:
# df2['nc_report'] = False
if (not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['Date of Inspection'].isnull().bool()):
df2['complete_time_in_days'] = (((df2['f2_checked_by_supd_on_date'].astype('datetime64[ns]') -
df2['Date of Inspection'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
df2['complete_time_in_days'] = 0
else:
df2['complete_time_in_days'] = 0
df2.rename(columns=Mapping, inplace=True)
df = df.append(df2)
df['a01a_inspection_date']=df['a01a_inspection_date'].apply(pd.to_datetime)
df['d4_submission_date']=df['d4_submission_date'].apply(pd.to_datetime)
df['f2_checked_by_supd_on_date']=df['f2_checked_by_supd_on_date'].apply(pd.to_datetime)
df.to_sql('cleansing_dc202106', con=conn, if_exists='replace', index= False)
# id SERIAL
create_table_sql_query = """
CREATE TABLE IF NOT EXISTS cleansing_dc202106 (
f2_checked_by_supd_on_date TIMESTAMP,
a01a_inspection_date TIMESTAMP,
d4_submission_date TIMESTAMP,
report_name VARCHAR (100),
report_complete_or_incomplete VARCHAR (100),
nc_report BOOLEAN,
complete_time_in_days NUMERIC(10,2)
);
"""
# */2 * * * * Execute every two minute
with DAG(
dag_id="dc202106_cleaning",
schedule_interval="0 15 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2023, 1, 17)
},
catchup=False) as f:
getMongoDB = PythonOperator(
task_id="getMongoDB",
python_callable=getMongoDB,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
# reformData = PythonOperator(
# task_id="reformData",
# python_callable=reformData,
# provide_context=True,
# # op_kwargs={"name": "Dylan"}
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
# insertData = PythonOperator(
# task_id="insetDateToPG",
# python_callable=insertData,
# provide_context=True,
# # op_kwargs={"name": "Dylan"}
# )
create_table = PostgresOperator(
sql = create_table_sql_query,
task_id = "create_table_task",
postgres_conn_id = "postgres_rds",
)
# insert_data = PostgresOperator(
# sql = insert_data_sql_query,
# task_id = "insertData_sql_query_task",
# postgres_conn_id = "postgres_rds",
# )
# getDrowToken >> getMongoDB >> reformData >> create_table
# create_table >> getDrowToken >> getMongoDB >> reformData >> insertData
# getDrowToken >> getMongoDB >> reformData >> insertData
create_table >> getDrowToken >> getMongoDB
|