DAG: dc201911_site_diary_activity

schedule: 0 15 * * *


dc201911_site_diary_activity

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
try:

    from datetime import timedelta
    from airflow import DAG
    
    from airflow.operators.python_operator import PythonOperator
    from datetime import datetime
    from pandas.io.json import json_normalize

    import pandas as pd
    import json
    import requests
    import numpy as np

    import psycopg2
    from sqlalchemy import create_engine

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://uat2.drow.cloud"

def getDrowToken(**context):

    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
    "username": "icwp2@drow.cloud",
    "password": "dGVzdDAxQHRlc3QuY29t"
    }
    ).json()
    context["ti"].xcom_push(key="token", value=response['token'])


def getdrowPSQLConnectionString():
    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  

    # User name of the database server
    dbUserName            = 'dRowAdmin'  

    # Password for the database user
    dbUserPassword        = 'drowsuper'  

    # Name of the database 
    database              = 'drowDateWareHouse'

    # Character set
    charSet               = "utf8mb4"  

    port                  = "5432"

    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    print(conn_string)
    return conn_string

def getFirstAction(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/5fe47ab9f964043fba328ca3?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    }
    )
    RISC_Data = json.loads(response.text)
    Mapping= {
    "A01 Date" : "a01_date", 
    "A02a Section" : "a02_portion_no",
    "A02a District" : "a03_location",
    "A03a - Activity Type" : "a04_activity",
    }

    conn_string = getdrowPSQLConnectionString()
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df = pd.DataFrame()
        _df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])
            df2 = df_nested_list.reindex(columns=Mapping.keys())

            if x['data']['A01 Date'] and x['data']['A01 Date'] < "2023-01-01":
                continue
            
            df3 = pd.DataFrame()
            if len(x['data']['A06 Labour']) > 0:
                for c in x['data']['A06 Labour']:
                    _df2 = df2.copy()
                    labourName = str(c['A06.2 Trade'])
                    labourNum = 0
                    if ('A06.3 No.' in c) and not c['A06.3 No.'] is None:
                        labourNum = c['A06.3 No.']
                    else:
                        labourNum = 0
                    
                    _df2['labour_type'] = labourName
                    _df2['labour_number'] = labourNum
                    df3 = df3.append(_df2)

                df2 = df2.append(df3)
            df2.rename(columns=Mapping, inplace=True)
            df2.columns = df2.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')

            df = df.append(df2)
            
            # new 
            df4 = df_nested_list[Mapping.keys()]
            df5 = pd.DataFrame()
            if 'A07 Plant' in x['data'] and len(x['data']['A07 Plant']) > 0:
                __df2 = df4.copy()
                noOfWorking = 0
                noOfIdel = 0

                for c in x['data']['A07 Plant']:
                    equipmentName = str(c['A07.2 Type'])
                    if ('A07.3b No. of Working' in c) and not c['A07.3b No. of Working'] is None:
                        noOfWorking = c['A07.3b No. of Working']
                    else:
                        noOfWorking = 0

                    if ('A07.4b No. of Idle' in c) and not c['A07.4b No. of Idle'] is None:
                        noOfIdel = c['A07.4b No. of Idle']                        
                    else:
                        noOfIdel = 0

                    __df2['plant_name'] = equipmentName
                    __df2['plant_working_number'] = noOfWorking
                    __df2['plant_idle_number'] = noOfIdel
                    df5 = df5.append(__df2)
                df4 = df4.append(df5)
            df4.rename(columns=Mapping, inplace=True)
            df4.columns = df4.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')

            _df = _df.append(df4)
        df['a01_date']=df['a01_date'].apply(pd.to_datetime)
        df.to_sql('site_diary_activities_labour_dc201911', con=conn, if_exists='replace', index= False)

        _df['a01_date']=_df['a01_date'].apply(pd.to_datetime)
        _df.to_sql('site_diary_activities_equipment_dc201911', con=conn, if_exists='replace', index= False)
    conn.close()
    
def getSecondAction(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/5fe47ab9f964043fba328ca3?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    }
    )

    RISC_Data = json.loads(response.text)
    Mapping= {
    "A01 Date" : "a01_date", 
    "A02a Section" : "a02_portion_no",
    "A02a District" : "a03_location",
    "A03a - Activity Type" : "a04_activity",
    }

    conn_string = getdrowPSQLConnectionString()
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df = pd.DataFrame()
        _df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])
            df2 = df_nested_list.reindex(columns=Mapping.keys())
            
            if x['data']['A01 Date'] and x['data']['A01 Date'] < "2023-01-01":
                continue

            df3 = pd.DataFrame()
            if len(x['data']['A06 Labour']) > 0:
                for c in x['data']['A06 Labour']:
                    _df2 = df2.copy()
                    labourName = str(c['A06.2 Trade'])
                    labourNum = 0
                    if ('A06.3 No.' in c) and not c['A06.3 No.'] is None:
                        labourNum = c['A06.3 No.']
                    else:
                        labourNum = 0
                    
                    _df2['labour_type'] = labourName
                    _df2['labour_number'] = labourNum
                    df3 = df3.append(_df2)

                df2 = df2.append(df3)
            df2.rename(columns=Mapping, inplace=True)
            df2.columns = df2.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')

            df = df.append(df2)
            
            # new 
            df4 = df_nested_list[Mapping.keys()]
            df5 = pd.DataFrame()
            if 'A07 Plant' in x['data'] and len(x['data']['A07 Plant']) > 0:
                __df2 = df4.copy()
                noOfWorking = 0
                noOfIdel = 0

                for c in x['data']['A07 Plant']:
                    equipmentName = str(c['A07.2 Type'])
                    if ('A07.3b No. of Working' in c) and not c['A07.3b No. of Working'] is None:
                        noOfWorking = c['A07.3b No. of Working']
                    else:
                        noOfWorking = 0

                    if ('A07.4b No. of Idle' in c) and not c['A07.4b No. of Idle'] is None:
                        noOfIdel = c['A07.4b No. of Idle']                        
                    else:
                        noOfIdel = 0

                    __df2['plant_name'] = equipmentName
                    __df2['plant_working_number'] = noOfWorking
                    __df2['plant_Idle_number'] = noOfIdel
                    df5 = df5.append(__df2)
                df4 = df4.append(df5)
            df4.rename(columns=Mapping, inplace=True)
            df4.columns = df4.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')

            _df = _df.append(df4)
        df['a01_date']=df['a01_date'].apply(pd.to_datetime)
        df.to_sql('site_diary_activities_labour_dc201911', con=conn, if_exists='replace', index= False)

        _df['a01_date']=_df['a01_date'].apply(pd.to_datetime)
        _df.to_sql('site_diary_activities_equipment_dc201911', con=conn, if_exists='replace', index= False)
    conn.close()

def getThirdAction(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/5fe47ab9f964043fba328ca3?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    }
    )
    
    #print('got_data')
    RISC_Data = json.loads(response.text)
    
    Mapping= {
    "A01 Date" : "a01_date", 
    "A02a District" : "a03_location",
    }

    conn_string = getdrowPSQLConnectionString()    
    db = create_engine(conn_string)
    conn = db.connect()

    with conn as conn:
        df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])
            df2 = df_nested_list.reindex(columns=Mapping.keys())
            df2.rename(columns=Mapping, inplace=True)
            df2.columns = df2.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_').str.replace('__', '_')
            df = df.append(df2)

        cnt = df.groupby('a01_date').size().rename('Count')
        df = df.drop_duplicates(subset='a01_date').merge(cnt, left_on='a01_date', right_index=True)
        df['a01_date']=df['a01_date'].apply(pd.to_datetime)
        df.to_sql('site_diary_activities_general_count_dc201911', con=conn, if_exists='replace', index= False)

# */2 * * * * Execute every two minute 
with DAG(
        dag_id="dc201911_site_diary_activity",
        schedule_interval="0 15 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2023, 1, 17)
        },
        catchup=False) as f:
    
    getFirstAction = PythonOperator(
        task_id="getFirstAction",
        python_callable=getFirstAction,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )
    
    getSecondAction = PythonOperator(
        task_id="getSecondAction",
        python_callable=getSecondAction,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )
    
    getThirdAction = PythonOperator(
        task_id="getThirdAction",
        python_callable=getThirdAction,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
    )

getDrowToken >> getFirstAction >> getSecondAction