DAG: dc201911_safety_walk

schedule: 0 15 * * *


dc201911_safety_walk

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
try:

    from datetime import timedelta
    from airflow import DAG
    
    from airflow.operators.python_operator import PythonOperator
    from datetime import datetime
    from pandas.io.json import json_normalize

    import pandas as pd
    import json
    import requests
    import numpy as np

    import psycopg2
    from sqlalchemy import create_engine

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://uat2.drow.cloud"

def getDrowToken(**context):
    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
    "username": "icwp2@drow.cloud",
    "password": "dGVzdDAxQHRlc3QuY29t"
    }
    ).json()
    context["ti"].xcom_push(key="token", value=response['token'])


def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/66139f25942af87b51ddd29e?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    }
    )

    RISC_Data = json.loads(response.text)
    Mapping= {
    "A3. Date Time" : "a3_date_time",
    "A1. No. of Walk": "a1_no_of_walk",
    }
    saftey_cats=[
	"1. General",
	"2. Flammable Liquids / Gases",
	"3. Hazardous Substances",
	"4. Electricity",
	"5. Fire Precaution",
	"6. Working Area",
	"7. Lifting Operation",
	"8. Material Hoist",
	"9. Confined Spaces",
	"10. Noise",
	"11. Gas Welding and Cutting Equipment",
	"12. Electricity‐arc Welding",
	"13. Mechanical Plant and Equipment",
	"14. Tunnel",
	"15. Formwork",
	"16. Hoarding",
	"17. Working at Height",
	"18. Abrasive Wheels",
	"19. Excavations",
	"20. Slings and other Lifting Gears",
	"21. Compressed Air/ Pneumatic Air Tools",
	"22. Protection of the Public",
	"23. Prevention of Mosquito Breed",
	"24. Work Over Water",
	"25. Welfare Facilities",
    ]
    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  
    # User name of the database server
    dbUserName            = 'dRowAdmin'  
    # Password for the database user
    dbUserPassword        = 'drowsuper'  
    # Name of the database 
    database              = 'drowDateWareHouse'
    # Character set
    charSet               = "utf8mb4"  

    port                  = "5432"

    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    
    db = create_engine(conn_string)
    conn = db.connect()
    df = pd.DataFrame()
    with conn as conn:
        if len(RISC_Data) == 0:
            return
        
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])
            df2 = df_nested_list.reindex(columns=Mapping.keys())
            if len(x['ApproveLogSummary']) > 0:
                request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : RSS Check/Agree Report"]
                if len(request_data) > 0 and 'from' in request_data[-1]:
                    df2['sup_rep_signed_date'] = request_data[len(request_data)-1]['from']
                else:
                    df2['sup_rep_signed_date'] = None
                if len(request_data) > 0 and 'to' in request_data[-1]:
                    df2['contractor_rep_signed_date'] = request_data[len(request_data)-1]['to']
                else:
                    df2['contractor_rep_signed_date'] = None
            else:
                df2['sup_rep_signed_date'] = None
                df2['contractor_rep_signed_date'] = None
                
            if x['data']['A1. No. of Walk'] != None :
                df2["report_name"] = x['data']['A1. No. of Walk']
            else :
                df2["report_name"] = None
            if (len(x['data']['C Summary of Follow-up Actions']) > 0):
                total_late_retification = 0
                for summaryData in x['data']['C Summary of Follow-up Actions']:
                    if ("B3 Agreed Due Date for Completion" in summaryData and "B3 Agreed Due Date for Completion" in summaryData and not (summaryData["B3 Agreed Due Date for Completion"]!='') and (not (summaryData["B4 Date Completed"]!='')) and (summaryData["B3 Agreed Due Date for Completion"].astype('datetime64[ns]') < summaryData["B4 Date Completed"].astype('datetime64[ns]')).bool()):
                        total_late_retification += 1
                df2['total_late_retification'] = total_late_retification
            else:
                total_late_retification = 0
            
            if (not df2['contractor_rep_signed_date'].isnull().bool() and not df2['A3. Date Time'].isnull().bool()):
                df2['days_complete'] = (((df2['contractor_rep_signed_date'].astype('datetime64[ns]') - 
                df2['A3. Date Time'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
                if df2['days_complete'].isnull().bool() or df2['days_complete'].lt(0).bool():
                    df2['days_complete'] = 0
            else:
                df2['days_complete'] = None
            

            df4=pd.DataFrame()
            for saftey_cat in saftey_cats:
                df3=df2.copy()
                complete = 0
                incomplete = 0
                if not df2['sup_rep_signed_date'].isnull().bool():
                    if (len(x['data'][str(saftey_cat)[0:3].strip()+' Checklist']) > 0):
                        for record in x['data'][str(saftey_cat)[0:3].strip()+' Checklist']:
                            if record[str(saftey_cat)[0:3].strip()+' Result'] != 'N/A':
                                complete += 1
                else:
                    if (len(x['data'][str(saftey_cat)[0:3].strip()+' Checklist']) > 0):
                        for record in x['data'][str(saftey_cat)[0:3].strip()+' Checklist']:
                            if record[str(saftey_cat)[0:3].strip()+' Result'] != 'N/A':
                                incomplete += 1
                df3['saftey_cat'] = saftey_cat
                df3['saftey_cat' + '_' + 'complete'] = complete
                df3['saftey_cat' + '_' + 'incomplete'] = incomplete
                df4 = df4.append(df3)
            df2=df2.append(df4)

            df = df.append(df2)
        df.rename(columns=Mapping, inplace=True)
        df['sup_rep_signed_date']=df['sup_rep_signed_date'].apply(pd.to_datetime)
        df['contractor_rep_signed_date']=df['contractor_rep_signed_date'].apply(pd.to_datetime)
        df['a3_date_time']=df['a3_date_time'].apply(pd.to_datetime)
        df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
        df.to_sql('safety_walk_dc201911', con=conn, if_exists='replace', index= False)


# */2 * * * * Execute every two minute 
with DAG(
        dag_id="dc201911_safety_walk",
        schedule_interval="0 15 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2023, 1, 17)
        },
        catchup=False) as f:
    
    getMongoDB = PythonOperator(
        task_id="getMongoDB",
        python_callable=getMongoDB,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
        # op_kwargs={"name": "Dylan"}
    )

getDrowToken >> getMongoDB