DAG: dc201911_cleaning

schedule: 0 15 * * *


dc201911_cleaning

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
try:

    from datetime import timedelta
    from airflow import DAG
    
    from airflow.operators.python_operator import PythonOperator
    from datetime import datetime
    from pandas.io.json import json_normalize
    from airflow.operators.postgres_operator import PostgresOperator

    import pandas as pd
    import json
    import requests
    import numpy as np

    import psycopg2
    from sqlalchemy import create_engine

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://uat2.drow.cloud"

def getDrowToken(**context):

    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
    "username": "icwp2@drow.cloud",
    "password": "dGVzdDAxQHRlc3QuY29t"
    }
    ).json()
    context["ti"].xcom_push(key="token", value=response['token'])

def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/605d53f21fb4b60ca76fb242?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    }
    )

    RISC_Data = json.loads(response.text)
    Mapping= {
    "Inspection Date" : "a01a_inspection_date",
    # "SupD signature time": "f2_checked_by_supd_on_date",
    }

    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  

    # User name of the database server
    dbUserName            = 'dRowAdmin'  

    # Password for the database user
    dbUserPassword        = 'drowsuper'  

    # Name of the database 
    database              = 'drowDateWareHouse'

    # Character set
    port                  = "5432"

    # Character set
    charSet               = "utf8mb4"  

    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])

            df2 = df_nested_list.reindex(columns=Mapping.keys())
            if len(x['ApproveLogSummary']) > 0:
                request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : RSS check"]
                if len(request_data) > 0 and 'from' in request_data[-1]:
                    df2['f2_checked_by_supd_on_date'] = request_data[-1]['from']
                else:
                    df2['f2_checked_by_supd_on_date'] = None
                if len(request_data) > 0 and 'to' in request_data[-1]:
                    df2['d4_submission_date'] = request_data[-1]['to']
                else:
                    df2['d4_submission_date'] = None
            else:
                df2['f2_checked_by_supd_on_date'] = None
                df2['d4_submission_date'] = None
                
            df2["report_name"] = df2["Inspection Date"].astype(str).str[:10]
            if len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="Z : END"])>0 or len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="C : Contractor Acknowledge and Archive"])>0:
                df2['report_complete_or_incomplete'] = 'complete'
            else:
                df2['report_complete_or_incomplete'] = 'incomplete'
            if 'data' in x and isinstance(x['data'], dict):
                for key in x['data']:
                    if 'Checklist' in key:
                        total_report = 0
                        total_x = 0
                        for item in x['data'][key]:
                            for item_key in item:
                                if item[item_key] == 'N/A' or item[item_key] == '✓':
                                    total_report += 1
                                if item[item_key] == '✘':
                                    total_x += 1
                                    total_report += 1
                        df2['nc_report_item'] = total_x
                        df2['total_report_item'] = total_report

            if (not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['Inspection Date'].isnull().bool()):
                df2['complete_time_in_days'] = (((df2['f2_checked_by_supd_on_date'].astype('datetime64[ns]') - 
                df2['Inspection Date'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
                if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
                    df2['complete_time_in_days'] = 0
            else:
                df2['complete_time_in_days'] = 0

            df2.rename(columns=Mapping, inplace=True)
            df = df.append(df2)
        df['a01a_inspection_date']=df['a01a_inspection_date'].apply(pd.to_datetime)
        df['d4_submission_date']=df['d4_submission_date'].apply(pd.to_datetime)
        df['f2_checked_by_supd_on_date']=df['f2_checked_by_supd_on_date'].apply(pd.to_datetime)
        df.to_sql('cleansing_dc201911', con=conn, if_exists='replace', index= False)
    

# id SERIAL
create_table_sql_query = """ 
    CREATE TABLE IF NOT EXISTS cleansing_dc201911 (
    f2_checked_by_supd_on_date TIMESTAMP,
    a01a_inspection_date TIMESTAMP,
    d4_submission_date TIMESTAMP,
    report_name VARCHAR (100),
    report_complete_or_incomplete VARCHAR (100),
    nc_report BOOLEAN,
    complete_time_in_days NUMERIC(10,2)
    );
    """


# */2 * * * * Execute every two minute 
with DAG(
        dag_id="dc201911_cleaning",
        schedule_interval="0 15 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2023, 1, 17)
        },
        catchup=False) as f:
    
    getMongoDB = PythonOperator(
        task_id="getMongoDB",
        python_callable=getMongoDB,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
    )

    create_table = PostgresOperator(
        sql = create_table_sql_query,
        task_id = "create_table_task",
        postgres_conn_id = "postgres_rds",
    )

create_table >> getDrowToken >> getMongoDB