DAG: cv202302_safety_walk

schedule: 0 15 * * *


cv202302_safety_walk

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
try:

    import json
    from datetime import datetime, timedelta

    import numpy as np
    import pandas as pd
    import psycopg2
    import requests
    from airflow import DAG
    from airflow.operators.python_operator import PythonOperator
    from pandas.io.json import json_normalize
    from sqlalchemy import create_engine

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://drow.cloud"

def getDrowToken(**context):
    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
        "username": "icwp2@drow.cloud",
        "password": "dGVzdDAxQHRlc3QuY29t"
    }).json()
    context["ti"].xcom_push(key="token", value=response['token'])


def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/64ba0dc1ef64f30c95e70223?export_type=0",
    headers={
        "x-access-token": f"Bearer {token}",
        "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    })

    RISC_Data = json.loads(response.text)
    Mapping= {
        "Date of Inspection:" : "a3_date_time",
        "Follow up Summary": "c_summary_of_follow_up_actions",
    }
    saftey_cats=[
        "1. 進出途徑 Access and Egress:",
        "2. 一般事項 General",
        "3. 高空作業 Working at Heigh:",
        "4. 起重機械及起重裝置Lifting Appliances & Lifting Gear:",
        "5. 電力 Electricity:",
        "6. 泥土工程 Earthwork:",
        "7. 機器 Machinery:",
        "8. 防火措施 Fire Preventions:",
        "9. 健康 Health:",
        "10. 個人防護設備 Personal Protective Equipment:",
        "11. 密閉空間 Confined Space:",
        "12. 化學物品:",
        "13. 福利設施:",
    ]
    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  
    # User name of the database server
    dbUserName            = 'dRowAdmin'  
    # Password for the database user
    dbUserPassword        = 'drowsuper'  
    # Name of the database 
    database              = 'drowDateWareHouse'
    # Character set
    charSet               = "utf8mb4"  
    port                  = "5432"

    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    
    db = create_engine(conn_string)
    conn = db.connect()
    df = pd.DataFrame()

    with conn as conn:
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])
            df2 = df_nested_list.reindex(columns=Mapping.keys())

            if len(x['ApproveLogSummary']) > 0:
                request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : Checked by RSS"]
                if len(request_data) > 0 and 'from' in request_data[-1]:
                    df2['sup_rep_signed_date'] = request_data[len(request_data)-1]['from']
                else:
                    df2['sup_rep_signed_date'] = None
                if len(request_data) > 0 and 'to' in request_data[-1]:
                    df2['contractor_rep_signed_date'] = request_data[len(request_data)-1]['to']
                else:
                    df2['contractor_rep_signed_date'] = None
            else:
                df2['sup_rep_signed_date'] = None
                df2['contractor_rep_signed_date'] = None
                
            if (len(x['data']['Follow up Summary']) > 0):
                total_late_retification = 0
                for summaryData in x['data']['Follow up Summary']:
                    if ("Agreed Due Date for Completion" in summaryData and "Agreed Due Date for Completion" in summaryData and not (summaryData["Agreed Due Date for Completion"]!='') and (not (summaryData["Date Completed"]!='')) and (summaryData["Agreed Due Date for Completion"].astype('datetime64[ns]') < summaryData["Date Completed"].astype('datetime64[ns]')).bool()):
                        total_late_retification += 1
                df2['total_late_retification'] = total_late_retification
            else:
                total_late_retification = 0
            
            if (not df2['contractor_rep_signed_date'].isnull().bool() and not df2['Date of Inspection:'].isnull().bool()):
                df2['days_complete'] = (((df2['contractor_rep_signed_date'].astype('datetime64[ns]') - 
                df2['Date of Inspection:'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
                if df2['days_complete'].isnull().bool() or df2['days_complete'].lt(0).bool():
                    df2['days_complete'] = 0
            else:
                df2['days_complete'] = None
            

            df4=pd.DataFrame()
            for saftey_cat in saftey_cats:
                df3=df2.copy()
                complete = 0
                incomplete = 0
                if not df2['sup_rep_signed_date'].isnull().bool():
                    if (len(x['data'][saftey_cat]) > 0):
                        for record in x['data'][saftey_cat]:
                            if record[saftey_cat.split(" ")[0] +' Result'] != '':
                                complete += 1
                else:
                    if (len(x['data'][saftey_cat]) > 0):
                        for record in x['data'][saftey_cat]:
                            if record[saftey_cat.split(" ")[0] +' Result'] != '':
                                incomplete += 1
                df3['saftey_cat'] = saftey_cat
                df3['saftey_cat' + '_' + 'complete'] = complete
                df3['saftey_cat' + '_' + 'incomplete'] = incomplete
                df4 = df4.append(df3)
            df2=df2.append(df4)

            df = df.append(df2)
            
        df.rename(columns=Mapping, inplace=True)
        df['sup_rep_signed_date']=df['sup_rep_signed_date'].apply(pd.to_datetime)
        df['contractor_rep_signed_date']=df['contractor_rep_signed_date'].apply(pd.to_datetime)
        df['a3_date_time']=df['a3_date_time'].apply(pd.to_datetime)
        # Remove all rows with column 'safety_cat' is null
        df = df[df['saftey_cat'].notnull()]

        df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')

        df.drop(['c_summary_of_follow_up_actions'], axis=1, inplace=True)
        df.to_sql('safety_walk_cv202302', con=conn, if_exists='replace', index= False)


# */2 * * * * Execute every two minute 
with DAG(
        dag_id="cv202302_safety_walk",
        schedule_interval="0 15 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2023, 1, 17)
        },
        catchup=False) as f:
    
    getMongoDB = PythonOperator(
        task_id="getMongoDB",
        python_callable=getMongoDB,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
        # op_kwargs={"name": "Dylan"}
    )

getDrowToken >> getMongoDB