1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175 | try:
import json
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import requests
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from pandas.io.json import json_normalize
from sqlalchemy import create_engine
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
def getMongoDB(**context):
token = context.get("ti").xcom_pull(key="token")
response = requests.get(
url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/6454b4412c8ac30c65397462?export_type=0",
headers={
"x-access-token": f"Bearer {token}",
"ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
}
)
print("Response:", response.text)
RISC_Data = json.loads(response.text)
Mapping= {
"Date of Inspection" : "a01a_inspection_date",
# "SupD signature time": "f2_checked_by_supd_on_date",
}
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
port = "5432"
# Character set
charSet = "utf8mb4"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
df = pd.DataFrame()
for x in RISC_Data:
df_nested_list = json_normalize(x['data'])
df2 = df_nested_list.reindex(columns=Mapping.keys())
df2.rename(columns=Mapping, inplace=True)
if len(x['ApproveLogSummary']) > 0:
request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : RSS check"]
if len(request_data) > 0 and 'from' in request_data[-1]:
df2['f2_checked_by_supd_on_date'] = request_data[-1]['from']
else:
df2['f2_checked_by_supd_on_date'] = None
if len(request_data) > 0 and 'to' in request_data[-1]:
df2['d4_submission_date'] = request_data[-1]['to']
else:
df2['d4_submission_date'] = None
else:
df2['f2_checked_by_supd_on_date'] = None
df2['d4_submission_date'] = None
df2["report_name"] = df2["a01a_inspection_date"].astype(str).str[:10]
if len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="Z : END"])>0 or len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="C : Contractor Acknowledge and Archive"])>0:
df2['report_complete_or_incomplete'] = 'complete'
else:
df2['report_complete_or_incomplete'] = 'incomplete'
if 'data' in x and isinstance(x['data'], dict):
for key in x['data']:
if 'Checklist' in key:
total_report = 0
total_x = 0
for item in x['data'][key]:
for item_key in item:
if item[item_key] == 'N/A' or item[item_key] == '✓':
total_report += 1
if item[item_key] == '✘':
total_x += 1
total_report += 1
df2['nc_report_item'] = total_x
df2['total_report_item'] = total_report
if (not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['a01a_inspection_date'].isnull().bool()):
df2['complete_time_in_days'] = (((df2['f2_checked_by_supd_on_date'].astype('datetime64[ns]') -
df2['a01a_inspection_date'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
df2['complete_time_in_days'] = 0
else:
df2['complete_time_in_days'] = 0
df = df.append(df2)
df['a01a_inspection_date']=df['a01a_inspection_date'].apply(pd.to_datetime)
df['d4_submission_date']=df['d4_submission_date'].apply(pd.to_datetime)
df['f2_checked_by_supd_on_date']=df['f2_checked_by_supd_on_date'].apply(pd.to_datetime)
df.to_sql('cleansing_cv202302', con=conn, if_exists='replace', index= False)
# id SERIAL
create_table_sql_query = """
CREATE TABLE IF NOT EXISTS cleansing_cv202302 (
f2_checked_by_supd_on_date TIMESTAMP,
a01a_inspection_date TIMESTAMP,
d4_submission_date TIMESTAMP,
report_name VARCHAR (100),
report_complete_or_incomplete VARCHAR (100),
nc_report BOOLEAN,
complete_time_in_days NUMERIC(10,2)
);
"""
# */2 * * * * Execute every two minute
with DAG(
dag_id="cv202302_cleaning",
schedule_interval="0 15 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2023, 1, 17)
},
catchup=False) as f:
getMongoDB = PythonOperator(
task_id="getMongoDB",
python_callable=getMongoDB,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
)
# create_table = PostgresOperator(
# sql = create_table_sql_query,
# task_id = "create_table_task",
# postgres_conn_id = "postgres_rds",
# )
# create_table >> getDrowToken >> getMongoDB
getDrowToken >> getMongoDB
|