1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235 | try:
from datetime import datetime, timezone, timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import psycopg2
from sqlalchemy import create_engine, text
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
def getdrowPSQLConnectionString():
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
return conn_string
def pipelineProcess(**context):
token = context.get("ti").xcom_pull(key="token")
conn_string = getdrowPSQLConnectionString()
# Update c5_key_date_data with latest revised completion dates from c5_nec_cas
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
try:
cas_df = pd.read_sql('SELECT * FROM c5_nec_cas', conn)
except Exception:
cas_df = pd.read_sql_table('c5_nec_cas', conn)
# Ensure datetime type for computation
if 'Revised_Completion_Date' in cas_df.columns:
cas_df['Revised_Completion_Date'] = pd.to_datetime(cas_df['Revised_Completion_Date'], errors='coerce')
# Only consider the specified key_Date values
allowed_keys = [
'Section 1','Section 2','Section 3A','Section 3B','Section 4','Section 5',
'Section 6','Section 7','Section 8','Section 9A','Section 9B','Section 9C',
'Key Date No. 1','Key Date No. 2','Key Date No. 3A','Key Date No. 3B','Key Date No. 4'
]
cas_df = cas_df[cas_df['Key_Date'].isin(allowed_keys)]
# Compute latest revised date per key date
latest_by_key = (
cas_df.dropna(subset=['Key_Date', 'Revised_Completion_Date'])
.groupby('Key_Date')['Revised_Completion_Date']
.max()
)
# Read existing key date table, append new column, and write back
kd_df = pd.read_sql('SELECT * FROM c5_key_date_data', conn)
key_col = 'Key_Date' if 'Key_Date' in kd_df.columns else ('key_Date' if 'key_Date' in kd_df.columns else None)
if key_col is not None:
kd_df['latest revised'] = kd_df[key_col].map(latest_by_key)
else:
print('Warning: No Key_Date column found in c5_key_date_data; skipping latest revised mapping')
kd_df.to_sql('c5_key_date_data_health_check_report', con=conn, if_exists='replace', index=False)
conn.close()
# Build CE/CNCE health check data into a single-row table
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
sql = '''
WITH cohorts_dedup AS (
SELECT "NEC_Event_No",
CASE
WHEN BOOL_OR("CE_Status" LIKE 'Quotation to be%') THEN 'A_QuotationToBe'
ELSE 'B_Other'
END AS cohort
FROM public.c5_nec_report_data
WHERE "NEC_Event_No" LIKE 'CN-%'
AND "CE_Status" <> ''
GROUP BY "NEC_Event_No"
),
paired AS (
SELECT
c."NEC_Event_No",
c.cohort,
MAX(CASE WHEN r."NEC_Doc_Type" LIKE 'PMIQ-%' THEN r."Receive_Date" END) AS pmiq_ts,
MAX(CASE WHEN r."NEC_Doc_Type" LIKE 'PMN-%' THEN r."Receive_Date" END) AS pmn_ts
FROM cohorts_dedup c
JOIN public.c5_nec_report_data r
ON r."NEC_Event_No" = c."NEC_Event_No"
AND r."NEC_Doc_Type" SIMILAR TO '(PMIQ-|PMN-)%'
GROUP BY c."NEC_Event_No", c.cohort
),
diffs AS (
SELECT
cohort,
"NEC_Event_No",
EXTRACT(EPOCH FROM (pmiq_ts - pmn_ts)) / 86400.0 AS response_days
FROM paired
WHERE pmiq_ts IS NOT NULL
AND pmn_ts IS NOT NULL
),
cnce_counts AS (
SELECT
COUNT(DISTINCT "NEC_Event_No") FILTER (WHERE "CE_Status" <> '') AS cnce_submitted_by_the_contractor,
COUNT(DISTINCT "NEC_Event_No") FILTER (WHERE "CE_Status" LIKE 'CE%') AS cnce_accepted_up_to_now
FROM public.c5_nec_report_data
WHERE "NEC_Event_No" LIKE 'CN-%'
),
diffs_counts AS (
SELECT
COUNT(*) FILTER (WHERE cohort = 'A_QuotationToBe') AS cnce_rejected,
COUNT(*) FILTER (WHERE cohort = 'B_Other') AS cnce_outstanding
FROM diffs
),
ce_counts AS (
SELECT
COUNT(DISTINCT "Original_Doc_No") FILTER (WHERE COALESCE("CE_Status", '') <> '') AS ce_all,
COUNT(DISTINCT CASE WHEN "NEC_Doc_Type" LIKE 'QA%' THEN "Original_Doc_No" END) AS ce_implemented,
COUNT(DISTINCT CASE WHEN "NEC_Event_No" LIKE 'PM%' AND COALESCE("CE_Status", '') <> '' AND "CE_Status" LIKE 'Quotation to be submitted%' THEN "NEC_Event_No" END) AS ce_pending_for_contractor_quotation,
COUNT(DISTINCT CASE WHEN "NEC_Event_No" LIKE 'PM%' AND COALESCE("CE_Status", '') <> '' AND "CE_Status" LIKE 'Quotation to be assessed%' THEN "NEC_Event_No" END) AS ce_under_review_by_project_manager,
COUNT(DISTINCT CASE WHEN "NEC_Event_No" LIKE 'PM%' AND COALESCE("CE_Status", '') <> '' AND ("CE_Status" LIKE 'Quotation to be submitted%' OR "CE_Status" LIKE 'Quotation to be assessed%') THEN "NEC_Event_No" END) AS ce_not_yet_implemented
FROM public.c5_nec_cas
)
SELECT
cnce_counts.cnce_submitted_by_the_contractor,
cnce_counts.cnce_accepted_up_to_now,
diffs_counts.cnce_rejected,
diffs_counts.cnce_outstanding,
ce_counts.ce_all,
ce_counts.ce_implemented,
ce_counts.ce_pending_for_contractor_quotation,
ce_counts.ce_under_review_by_project_manager,
ce_counts.ce_not_yet_implemented
FROM cnce_counts CROSS JOIN diffs_counts CROSS JOIN ce_counts;
'''
try:
result = conn.execute(text(sql))
try:
rows = result.mappings().all() # SQLAlchemy 1.4+
result_df = pd.DataFrame(rows)
except Exception:
rows = result.fetchall() # Older SQLAlchemy ResultProxy
columns = result.keys()
result_df = pd.DataFrame(rows, columns=columns)
result_df.to_sql('c5_health_check_report_ce_cnce_data', con=conn, if_exists='replace', index=False)
except Exception as e:
print('Error building c5_health_check_report_ce_cnce_data:', str(e))
conn.close()
# */2 * * * * Execute every two minute
with DAG(
dag_id="c5_nec_report_copy",
schedule_interval="0 0,4,8,11,16 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2022, 10, 24)
},
catchup=False) as f:
pipelineProcess = PythonOperator(
task_id="pipelineProcess",
python_callable=pipelineProcess,
provide_context=True,
)
# getWorkflowRecords = PythonOperator(
# task_id="getWorkflowRecords",
# python_callable=getWorkflowRecords,
# provide_context=True,
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
# create_table = PostgresOperator(
# sql = create_table_sql_query,
# task_id = "create_table_task",
# postgres_conn_id = "postgres_rds",
# )
# insert_data = PostgresOperator(
# sql = insert_data_sql_query,
# task_id = "insertData_sql_query_task",
# postgres_conn_id = "postgres_rds",
# )
# getDrowToken >> pipelineProcess >> getWorkflowRecords
getDrowToken >> pipelineProcess
|