1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429 | try:
from datetime import datetime, timezone, timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import psycopg2
from sqlalchemy import create_engine, text
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
def getdrowPSQLConnectionString():
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
return conn_string
def pipelineProcess(**context):
token = context.get("ti").xcom_pull(key="token")
conn_string = getdrowPSQLConnectionString()
# Update c5_key_date_data with latest revised completion dates from c5_nec_cas
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
try:
cas_df = pd.read_sql('SELECT * FROM c5_nec_cas', conn)
except Exception:
cas_df = pd.read_sql_table('c5_nec_cas', conn)
# Ensure datetime type for computation
if 'Revised_Completion_Date' in cas_df.columns:
cas_df['Revised_Completion_Date'] = pd.to_datetime(cas_df['Revised_Completion_Date'], errors='coerce')
# Only consider the specified key_Date values
allowed_keys = [
'Section 1','Section 2','Section 3A','Section 3B','Section 4','Section 5',
'Section 6','Section 7','Section 8','Section 9A','Section 9B','Section 9C',
'Key Date No. 1','Key Date No. 2','Key Date No. 3A','Key Date No. 3B','Key Date No. 4'
]
cas_df = cas_df[cas_df['Key_Date'].isin(allowed_keys)]
# Compute latest revised date per key date
latest_by_key = (
cas_df.dropna(subset=['Key_Date', 'Revised_Completion_Date'])
.groupby('Key_Date')['Revised_Completion_Date']
.max()
)
# Read existing key date table, append new column, and write back
kd_df = pd.read_sql('SELECT * FROM c5_key_date_data', conn)
key_col = 'Key_Date' if 'Key_Date' in kd_df.columns else ('key_Date' if 'key_Date' in kd_df.columns else None)
if key_col is not None:
kd_df['latest revised'] = kd_df[key_col].map(latest_by_key)
else:
print('Warning: No Key_Date column found in c5_key_date_data; skipping latest revised mapping')
kd_df.to_sql('c5_key_date_data_health_check_report', con=conn, if_exists='replace', index=False)
conn.close()
# Build CE/CNCE health check data into a single-row table
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
sql = '''
WITH cohorts_dedup AS (
SELECT "NEC_Event_No",
CASE
WHEN BOOL_OR("CE_Status" LIKE 'Quotation to be%') THEN 'A_QuotationToBe'
ELSE 'B_Other'
END AS cohort
FROM public.c5_nec_report_data
WHERE "NEC_Event_No" LIKE 'CN-%'
AND "CE_Status" <> ''
GROUP BY "NEC_Event_No"
),
paired AS (
SELECT
c."NEC_Event_No",
c.cohort,
MAX(CASE WHEN r."NEC_Doc_Type" LIKE 'PMIQ-%' THEN r."Receive_Date" END) AS pmiq_ts,
MAX(CASE WHEN r."NEC_Doc_Type" LIKE 'PMN-%' THEN r."Receive_Date" END) AS pmn_ts
FROM cohorts_dedup c
JOIN public.c5_nec_report_data r
ON r."NEC_Event_No" = c."NEC_Event_No"
AND r."NEC_Doc_Type" SIMILAR TO '(PMIQ-|PMN-)%'
GROUP BY c."NEC_Event_No", c.cohort
),
diffs AS (
SELECT
cohort,
"NEC_Event_No",
EXTRACT(EPOCH FROM (pmiq_ts - pmn_ts)) / 86400.0 AS response_days
FROM paired
WHERE pmiq_ts IS NOT NULL
AND pmn_ts IS NOT NULL
),
cnce_counts AS (
SELECT
COUNT(DISTINCT "NEC_Event_No") FILTER (WHERE "CE_Status" <> '') AS cnce_submitted_by_the_contractor,
COUNT(DISTINCT "NEC_Event_No") FILTER (WHERE "CE_Status" LIKE 'CE%') AS cnce_accepted_up_to_now
FROM public.c5_nec_report_data
WHERE "NEC_Event_No" LIKE 'CN-%'
),
diffs_counts AS (
SELECT
COUNT(*) FILTER (WHERE cohort = 'A_QuotationToBe') AS cnce_rejected,
COUNT(*) FILTER (WHERE cohort = 'B_Other') AS cnce_outstanding
FROM diffs
),
ce_counts AS (
SELECT
COUNT(DISTINCT "NEC_Event_No") FILTER (WHERE COALESCE("CE_Status", '') <> '') AS ce_all,
COUNT(DISTINCT CASE WHEN "NEC_Doc_Type" LIKE 'QA%' THEN "Original_Doc_No" END) AS ce_implemented,
COUNT(DISTINCT CASE WHEN "NEC_Event_No" LIKE 'PM%' AND COALESCE("CE_Status", '') <> '' AND "CE_Status" LIKE 'Quotation to be submitted%' THEN "NEC_Event_No" END) AS ce_pending_for_contractor_quotation,
COUNT(DISTINCT CASE WHEN "NEC_Event_No" LIKE 'PM%' AND COALESCE("CE_Status", '') <> '' AND "CE_Status" LIKE 'Quotation to be assessed%' THEN "NEC_Event_No" END) AS ce_under_review_by_project_manager,
COUNT(DISTINCT CASE WHEN "NEC_Event_No" LIKE 'PM%' AND COALESCE("CE_Status", '') <> '' AND ("CE_Status" LIKE 'Quotation to be submitted%' OR "CE_Status" LIKE 'Quotation to be assessed%') THEN "NEC_Event_No" END) AS ce_not_yet_implemented
FROM public.c5_nec_cas
)
SELECT
cnce_counts.cnce_submitted_by_the_contractor,
cnce_counts.cnce_accepted_up_to_now,
diffs_counts.cnce_rejected,
diffs_counts.cnce_outstanding,
ce_counts.ce_all,
ce_counts.ce_implemented,
ce_counts.ce_pending_for_contractor_quotation,
ce_counts.ce_under_review_by_project_manager,
ce_counts.ce_not_yet_implemented
FROM cnce_counts CROSS JOIN diffs_counts CROSS JOIN ce_counts;
'''
try:
result = conn.execute(text(sql))
try:
rows = result.mappings().all() # SQLAlchemy 1.4+
result_df = pd.DataFrame(rows)
except Exception:
rows = result.fetchall() # Older SQLAlchemy ResultProxy
columns = result.keys()
result_df = pd.DataFrame(rows, columns=columns)
result_df.to_sql('c5_health_check_report_ce_cnce_data', con=conn, if_exists='replace', index=False)
except Exception as e:
print('Error building c5_health_check_report_ce_cnce_data:', str(e))
conn.close()
# Build merged CE metrics (implemented, due to inclement weather, pending quotation, under review, not yet implemented buckets)
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
sql_metrics = '''
WITH base AS (
SELECT *
FROM public.c5_nec_cas
),
per_event AS (
SELECT
"Original_Doc_No",
MIN(CASE WHEN "NEC_Doc_Type" LIKE 'PMN%' THEN "Receive_Date" END) AS pmn_date,
MIN(CASE WHEN "NEC_Doc_Type" LIKE 'QA%' THEN "Receive_Date" END) AS qa_date
FROM base
GROUP BY "Original_Doc_No"
),
ce_impl AS (
SELECT
COUNT(*) AS total_events,
((AVG(qa_date - pmn_date))::text) AS avg_response_interval_text,
ROUND(AVG(EXTRACT(EPOCH FROM (qa_date - pmn_date)) / 86400.0)::numeric, 2) AS avg_response_days
FROM per_event
WHERE qa_date IS NOT NULL AND pmn_date IS NOT NULL
),
eligible_inclement AS (
SELECT DISTINCT "Original_Doc_No"
FROM base
WHERE "NEC_Clause" = '60.1(13)'
),
ce_inc AS (
SELECT
COUNT(*) AS total_events,
ROUND(AVG(EXTRACT(EPOCH FROM (qa_date - pmn_date)) / 86400.0)::numeric, 2) AS avg_response_days
FROM per_event
JOIN eligible_inclement USING ("Original_Doc_No")
WHERE qa_date IS NOT NULL AND pmn_date IS NOT NULL
),
base_pending AS (
SELECT "NEC_Event_No", "Receive_Date"
FROM base
WHERE COALESCE("CE_Status",'') <> ''
AND "CE_Status" LIKE 'Quotation to be submitted%'
AND "Receive_Date" IS NOT NULL
),
per_event_pending AS (
SELECT "NEC_Event_No", MIN("Receive_Date") AS first_receive_date
FROM base_pending
GROUP BY "NEC_Event_No"
),
ce_pending AS (
SELECT
COUNT(*) AS total_events,
ROUND(AVG(EXTRACT(EPOCH FROM (NOW() - first_receive_date)) / 86400.0)::numeric, 2) AS avg_days_since_receive
FROM per_event_pending
),
base_review AS (
SELECT "NEC_Event_No", "Receive_Date"
FROM base
WHERE COALESCE("CE_Status",'') <> ''
AND "CE_Status" LIKE 'Quotation to be assessed%'
AND "Receive_Date" IS NOT NULL
),
per_event_review AS (
SELECT "NEC_Event_No", MIN("Receive_Date") AS first_receive_date
FROM base_review
GROUP BY "NEC_Event_No"
),
ce_review AS (
SELECT
COUNT(*) AS total_events,
ROUND(AVG(EXTRACT(EPOCH FROM (NOW() - first_receive_date)) / 86400.0)::numeric, 2) AS avg_days_since_receive
FROM per_event_review
),
base_not AS (
SELECT "NEC_Event_No", "Receive_Date"
FROM base
WHERE COALESCE("CE_Status",'') <> ''
AND ("CE_Status" LIKE 'Quotation to be submitted%' OR "CE_Status" LIKE 'Quotation to be assessed%')
AND "Receive_Date" IS NOT NULL
),
per_event_not AS (
SELECT "NEC_Event_No", MIN("Receive_Date") AS first_receive_date
FROM base_not
GROUP BY "NEC_Event_No"
),
labeled AS (
SELECT
(CURRENT_DATE - first_receive_date::date) AS days_since_receive,
CASE
WHEN age(CURRENT_DATE, first_receive_date::date) < interval '3 months' THEN '< 3 months'
WHEN age(CURRENT_DATE, first_receive_date::date) < interval '6 months' THEN '3 - 6 months'
WHEN age(CURRENT_DATE, first_receive_date::date) < interval '9 months' THEN '6 - 9 months'
WHEN age(CURRENT_DATE, first_receive_date::date) < interval '12 months' THEN '9 - 12 months'
WHEN age(CURRENT_DATE, first_receive_date::date) < interval '24 months' THEN '12 - 24 months'
ELSE '> 24 months'
END AS bucket
FROM per_event_not
),
ce_not_buckets AS (
SELECT
COALESCE(bucket, 'TOTAL') AS bucket,
COUNT(*) AS total_events,
ROUND(AVG(days_since_receive)::numeric, 2) AS avg_days_since_receive
FROM labeled
GROUP BY ROLLUP (bucket)
),
eligible_cnce AS (
SELECT DISTINCT "NEC_Event_No"
FROM public.c5_nec_report_data
WHERE "NEC_Event_No" LIKE 'CN-%'
AND "CE_Status" <> ''
),
per_event_cnce AS (
SELECT
t."NEC_Event_No",
MIN(CASE WHEN t."NEC_Doc_Type" LIKE 'PMN%' THEN t."Receive_Date" END) AS pmn_date,
MIN(CASE WHEN t."NEC_Doc_Type" LIKE 'NCE%' THEN t."Receive_Date" END) AS nce_date
FROM base t
JOIN eligible_cnce e USING ("NEC_Event_No")
GROUP BY t."NEC_Event_No"
),
paired_cnce AS (
SELECT
"NEC_Event_No",
pmn_date,
nce_date,
EXTRACT(EPOCH FROM (pmn_date - nce_date)) / 86400.0 AS days_diff
FROM per_event_cnce
WHERE pmn_date IS NOT NULL
AND nce_date IS NOT NULL
),
cnce_pmn_diff AS (
SELECT
COUNT(*) AS total_events,
ROUND(AVG(days_diff)::numeric, 2) AS avg_days_nce_minus_pmn
FROM paired_cnce
)
SELECT 'ce_implemented'::text AS metric,
NULL::text AS label,
ce_impl.total_events,
ce_impl.avg_response_days,
ce_impl.avg_response_interval_text AS avg_response_interval
FROM ce_impl
UNION ALL
SELECT 'ce_due_inclement_weather'::text AS metric,
NULL::text AS label,
ce_inc.total_events,
ce_inc.avg_response_days,
NULL::text AS avg_response_interval
FROM ce_inc
UNION ALL
SELECT 'ce_pending_contractors_quotation'::text AS metric,
NULL::text AS label,
ce_pending.total_events,
ce_pending.avg_days_since_receive AS avg_response_days,
NULL::text AS avg_response_interval
FROM ce_pending
UNION ALL
SELECT 'ce_under_review_by_project_manager'::text AS metric,
NULL::text AS label,
ce_review.total_events,
ce_review.avg_days_since_receive AS avg_response_days,
NULL::text AS avg_response_interval
FROM ce_review
UNION ALL
SELECT 'ce_not_yet_implemented'::text AS metric,
ce_not_buckets.bucket AS label,
ce_not_buckets.total_events,
ce_not_buckets.avg_days_since_receive AS avg_response_days,
NULL::text AS avg_response_interval
FROM ce_not_buckets
UNION ALL
SELECT 'cnce_accepted_up_to_now'::text AS metric,
NULL::text AS label,
cnce_pmn_diff.total_events,
cnce_pmn_diff.avg_days_nce_minus_pmn AS avg_response_days,
NULL::text AS avg_response_interval
FROM cnce_pmn_diff;
'''
try:
result = conn.execute(text(sql_metrics))
try:
rows = result.mappings().all()
result_df = pd.DataFrame(rows)
except Exception:
rows = result.fetchall()
columns = result.keys()
result_df = pd.DataFrame(rows, columns=columns)
result_df.to_sql('c5_health_check_report_ce_merged_metrics', con=conn, if_exists='replace', index=False)
except Exception as e:
print('Error building c5_health_check_report_ce_merged_metrics:', str(e))
conn.close()
# */2 * * * * Execute every two minute
with DAG(
dag_id="c5_nec_report_copy",
schedule_interval="0 0,4,8,11,16 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2022, 10, 24)
},
catchup=False) as f:
pipelineProcess = PythonOperator(
task_id="pipelineProcess",
python_callable=pipelineProcess,
provide_context=True,
)
# getWorkflowRecords = PythonOperator(
# task_id="getWorkflowRecords",
# python_callable=getWorkflowRecords,
# provide_context=True,
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
# create_table = PostgresOperator(
# sql = create_table_sql_query,
# task_id = "create_table_task",
# postgres_conn_id = "postgres_rds",
# )
# insert_data = PostgresOperator(
# sql = insert_data_sql_query,
# task_id = "insertData_sql_query_task",
# postgres_conn_id = "postgres_rds",
# )
# getDrowToken >> pipelineProcess >> getWorkflowRecords
getDrowToken >> pipelineProcess
|