1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664 | try:
from datetime import datetime, timezone, timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import psycopg2
from sqlalchemy import create_engine
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
def getSheetData(token , sheetId):
response = requests.get(
url=f"{dRoW_api_end_url}/api/sheets/{sheetId}?with_records=true&fields=",
headers={
"x-access-token": f"Bearer {token}",
}
)
sheet = json.loads(response.text)
headers = sheet['header']
record = sheet['record']
dataToExtract=[]
for d in record:
objectToPush = {}
for v in d['values']:
for c in headers:
colNameToExtract = c['colName']
if v['colName'] == colNameToExtract:
# # print(v)
if v.get('multValue') != None:
if v['multValue'] == True:
if v['colType'] == 'Table':
tObjectArray = []
for t in v['tableValue']:
tObjectToPush = {}
for s in t['subValues']:
tObjectToPush[s['colName']] = s.value
tObjectArray.push(tObjectToPush)
else:
objectToPush[v['colName']] = v['valueArray']
else:
if v.get('value') != None:
if v.get('value') == 'NA':
objectToPush[v['colName']] = None
else:
objectToPush[v['colName']] = v['value']
else:
objectToPush[v['colName']] = None
else:
if v.get('value') != None:
if v.get('value') == 'NA':
objectToPush[v['colName']] = None
else:
objectToPush[v['colName']] = v['value']
else:
objectToPush[v['colName']] = None
dataToExtract.append(objectToPush)
return dataToExtract
def getWorkflowData(token , workflowId):
response = requests.get(
url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/{workflowId}?export_type=0",
headers={
"x-access-token": f"Bearer {token}",
}
)
return json.loads(response.text)
def getdrowPSQLConnectionString():
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
return conn_string
def pipelineProcess(**context):
token = context.get("ti").xcom_pull(key="token")
# Contract Data
Data = getSheetData(token, "63fd68e49f48080c646e7f32")
# "Section and key date data"
Data2 = getSheetData(token, "63fd69ee4fa5210cfa5824db")
conn_string = getdrowPSQLConnectionString()
db = create_engine(conn_string)
conn = db.connect()
df = pd.DataFrame()
_df = pd.DataFrame()
with conn as conn:
for x in Data:
df_nested_list = json_normalize(x)
df2 = df_nested_list
df = df.append(df2)
df['starting date']=df['starting date'].apply(pd.to_datetime)
df['ori comp date']=df['ori comp date'].apply(pd.to_datetime)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
df.to_sql('c5_nec_section_of_work', con=conn, if_exists='replace', index= False)
for x in Data2:
df_nested_list = json_normalize(x)
df2=df_nested_list
_df = _df.append(df2)
_df['Starting Date']=_df['Starting Date'].apply(pd.to_datetime)
_df['Original completion dates']=_df['Original completion dates'].apply(pd.to_datetime)
_df.columns = _df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
_df.to_sql('c5_nec_section_of_work_key_date', con=conn, if_exists='replace', index= False)
#"PWDD and Target Cost with Actual Monthly Total"
Data = getSheetData(token, "63fef067fc3ac00c7190564c")
df = pd.DataFrame.from_dict(Data)
df = df.replace(',', '', regex=True)
numerics = df.select_dtypes(include="number").columns
df=df.apply(pd.to_numeric, errors='ignore')
df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
df['IP No.']=df['IP No.'].astype(str)
df['Month - Year']=df['Month - Year'].apply(pd.to_datetime)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
df.to_sql('c5_finance_data', con=conn, if_exists='replace')
conn.close()
# "Approved and Forecast Price Bar Chart"
data = getSheetData(token, "63fd68369f48080c646e7bab")
df = pd.DataFrame.from_dict(data)
numerics = df.select_dtypes(include="number").columns
df=df.apply(pd.to_numeric, errors='ignore')
df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
df['Month - Year']=df['Month - Year'].apply(pd.to_datetime)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
df.to_sql('c5_finance_status_data', con=conn, if_exists='replace')
conn.close()
# EOT DATA
data = getSheetData(token, "63fc9ef84243400ca9af7c70")
df = pd.DataFrame.from_dict(data)
numerics = df.select_dtypes(include="number").columns
df=df.apply(pd.to_numeric, errors='ignore')
df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
df['Month - Year']=df['Month - Year'].apply(pd.to_datetime)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
df.to_sql('c5_eot_data', con=conn, if_exists='replace')
conn.close()
# "Programme Data"
data= getSheetData(token, "63fd698ed6779f0c607a677c")
if data:
df = pd.DataFrame.from_dict(data)
df['Submission Date']=df['Submission Date'].apply(lambda row : datetime.strptime(row[0:24], '%a %b %d %Y %H:%M:%S'))
df['Acceptance Date']=df['Acceptance Date'].apply(lambda row : datetime.strptime(row[0:24], '%a %b %d %Y %H:%M:%S'))
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
df.to_sql('c5_programme_data', con=conn, if_exists='replace')
conn.close()
#"key date Planned Completion Date (PCD)"
data = getSheetData(token, "63fd6a2b86bb350c6318686a")
df = pd.DataFrame.from_dict(data)
df['Planned Completion Date(PCD)']=df['Planned Completion Date(PCD)'].apply(lambda row: row.split(' (')[0])
print('Planned Completion Date(PCD):', df['Planned Completion Date(PCD)'][0])
df['Planned Completion Date(PCD)'] = df['Planned Completion Date(PCD)'].apply(lambda row: datetime.strptime(row[0:24], '%a %b %d %Y %H:%M:%S') if len(row) == 19 else datetime.strptime(row, '%a %b %d %Y %H:%M:%S GMT%z'))
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
db = create_engine(conn_string)
conn = db.connect()
with conn as conn:
df.to_sql('c5_key_date_data', con=conn, if_exists='replace')
conn.close()
# CAS
Data = getWorkflowData(token, "637c7d22b38f8ca02f5c49ab")
Mapping= {
"Original Doc No.": "Original_Doc_No",
"NEC Doc Type": "NEC_Doc_Type",
"NEC Event No.": "NEC_Event_No",
"Doc Ver.": "Doc_Ver",
"Doc Date": "Doc_Date",
"Subject": "Subject",
"From": "From",
"To": "To",
"CE Amount": "CE_PMI_Amount",
"CE Increase / Decrease": "CE_Increase_Decrease",
"Quotation Status": "Quotation_Status",
"NEC Clause": "NEC_Clause",
"Receive Date": "Receive_Date"
}
conn_string = getdrowPSQLConnectionString()
# #create_engine('mysql+mysqldb://root:password@localhost:3306/mydbname', echo = False)
# conn_string = ('postgres://' +
# dbUserName + ':' +
# dbUserPassword +
# '@' + host + ':' + port +
# '/' + database)
# # df = context.get("ti").xcom_pull(key="InsertData")
# # print(df)
# # conn_string = 'postgres://user:password@host/data1'
# db = create_engine(conn_string)
conn = db.connect()
# print('db connected')
df = pd.DataFrame()
i=0
with conn as conn:
for x in Data:
try:
if len(x['data'].keys()) == 0:
continue
df_nested_list = json_normalize(x['data'])
# print('process 1')
# print(x['data'].keys())
df2 = df_nested_list.reindex(columns=Mapping.keys())
df2['record_status'] = x['Status']
df2['NEC Doc Title']=x['data']['NEC Doc Type']+x['data']['NEC Event No.']
df2['Doc Org Ver']= x['data']['Doc Ver.']
if x['data']['Receive Date']=='' or x['data']['Receive Date']==None:
df2['withReceiveDate'] = False
else:
df2['withReceiveDate'] = True
if x['data']['Receive Date']=='' or x['data']['Receive Date']==None or pd.isna(x['data']['Receive Date']):
df2['Receive Date']=x['data']['Doc Date']
y=0
if x['data']['Doc Ver.'] == None:
df2['Doc Ver.'] = y
elif x['data']['Doc Ver.'].startswith('Rev. '):
y = x['data']['Doc Ver.'].replace('Rev. ', '')
y = int(y)
else:
y = x['data']['Doc Ver.'].replace('-', '').replace('r','')
if y!='' and not y.isnumeric():
last_letter = y[-1]
# print('ver',y)
y = int(ord(last_letter)) - int(ord('A')) + 1
# print(y)
elif y =='':
y = 0
else :
y = int(y)
df2['Doc Ver.'] = y
if (not df2['NEC Doc Title'].empty and 'NEC Doc Title' in df.columns):
# print (y)
# print('NEC Doc Title' in df.columns)
check_ver_df = df.loc[(df['NEC Doc Title'] == x['data']['NEC Doc Type']+x['data']['NEC Event No.'])]
if check_ver_df.empty:
df2['is_latest'] = 'Yes'
else :
check_ver_df2 = check_ver_df.loc[(check_ver_df['Doc Ver.'] > y)]
if not check_ver_df2.empty:
df2['is_latest'] = "No"
else:
df.loc[(df['NEC Doc Title'] == x['data']['NEC Doc Type']+x['data']['NEC Event No.']) & ( df['Doc Ver.']<y), 'is_latest'] = 'No'
df2['is_latest'] = 'Yes'
else:
df2['is_latest'] = 'Yes'
df2['NEC Doc Title With Version']=x['data']['NEC Doc Type']+x['data']['NEC Event No.']+'-'+str(y)
if (x['data'].get('NEC Doc Type') or '').strip().upper() == 'PMN-' and y==0 and (x['Status'] == 'Receipt by Contractor' or x['Status'] == 'Closed'):
df2['From_Status'] = '1. CE notified'
elif (x['data'].get('NEC Doc Type') or '').strip().upper() == 'CSQ-' and y==0:
df2['From_Status'] = '2. Quotation Submitted'
elif (x['data'].get('NEC Doc Type') or '').strip().upper() == 'QA-' and (x['Status'] == 'Receipt by Contractor' or x['Status'] == 'Closed'):
df2['From_Status'] = '3. CE implemented'
else:
df2['From_Status'] = None
if len(x['data']['Change to Time'])>0 and x['data']['NEC Doc Type']!='EW-':
df4=pd.DataFrame()
for change_to_time_table in x['data']['Change to Time']:
df3=df2.copy()
i = i+1
if 'Key Date' in change_to_time_table:
df3['Key Date'] = change_to_time_table['Key Date']
if 'Extension in days' in change_to_time_table:
df3['Extension in days'] = change_to_time_table['Extension in days']
if 'Ori Completion Date' in change_to_time_table:
df3['Ori Completion Date'] = change_to_time_table['Ori Completion Date']
if 'Revised Completion Date' in change_to_time_table:
df3['Revised Completion Date'] = change_to_time_table['Revised Completion Date']
if i >0:
df2['From_Status'] = None
df4 = df4.append(df3)
i = 0
df2 = df2.iloc[0:0]
df2=df2.append(df4)
# print('process 2')
# print('loading into DB')
df = df.append(df2)
except:
continue
# df['is_latest'].fillna('No',inplace=True)
df.rename(columns=Mapping, inplace=True)
fields_to_adjust = ['Doc_Date', 'Ori Completion Date', 'Revised Completion Date', 'Receive_Date']
for field in fields_to_adjust:
if field in df.columns:
df[field] = df[field].apply(pd.to_datetime)
df[field] = df[field] - pd.Timedelta(hours=8)
# df['Doc_Date']=df['Doc_Date'].apply(pd.to_datetime)
# df['Doc_Date'] = df['Doc_Date'] - pd.Timedelta(hours=8)
# df['Ori Completion Date']=df['Ori Completion Date'].apply(pd.to_datetime)
# df['Ori Completion Date'] = df['Ori Completion Date'] - pd.Timedelta(hours=8)
# df['Revised Completion Date']=df['Revised Completion Date'].apply(pd.to_datetime)
# df['Revised Completion Date'] = df['Revised Completion Date'] - pd.Timedelta(hours=8)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
def handle_quotation_status(row, df):
# print(row)
if row['Quotation_Status'] == 'Quotation to be submitted':
# Filter the DataFrame for the same event and specific document type
same_event_df = df[(df['NEC_Event_No'] == row['NEC_Event_No']) & (df['NEC_Doc_Type'] == 'CSQ-')]
# Check if the DataFrame is not empty
if not same_event_df.empty:
# Get the latest document
latest_pmn = same_event_df.sort_values(by='Receive_Date', ascending=False).iloc[0]
# Calculate the difference in months
months_diff = (row['Receive_Date'] - latest_pmn['Receive_Date']).days / 30
if months_diff > 24:
return 'Quotation to be submitted > 24 months'
else:
return 'Quotation to be submitted < 24 months'
else:
# No CSQ records found, calculate the difference from today
latest_receive_date = row['Receive_Date']
# if pd.notna(latest_receive_date):
# latest_receive_date = latest_receive_date.tz_localize(None).normalize()
# else:
# latest_receive_date = row['Doc Date'].tz_localize(None).normalize()
# print("latest_receive_date is not a valid datetime", latest_receive_date, row, "x['data']['Doc Date']= ", x['data']['Doc Date'])
today = pd.Timestamp.today().tz_localize(None).normalize() # Make today timezone-naive
latest_receive_date = latest_receive_date.tz_localize(None).normalize() # Make latest_receive_date timezone-naive
months_diff = (today - latest_receive_date).days / 30
# print(row['NEC_Event_No'],months_diff)
if months_diff > 24:
return 'Quotation to be submitted > 24 months'
else:
return 'Quotation to be submitted < 24 months'
elif row['Quotation_Status'] == 'Quotation to be assessed':
# Filter the DataFrame for the same event and specific document type
same_event_df = df[(df['NEC_Event_No'] == row['NEC_Event_No']) & (df['NEC_Doc_Type'] == 'QA-')]
# Check if the DataFrame is not empty
if not same_event_df.empty:
# Get the latest document
latest_pmn = same_event_df.sort_values(by='Receive_Date', ascending=False).iloc[0]
# Calculate the difference in months
months_diff = (row['Receive_Date'] - latest_pmn['Receive_Date']).days / 30
if months_diff > 24:
return 'Quotation to be assessed > 24 months'
else:
return 'Quotation to be assessed < 24 months'
else:
latest_receive_date = row['Receive_Date']
today = pd.Timestamp.today().tz_localize(None).normalize() # Make today timezone-naive
latest_receive_date = latest_receive_date.tz_localize(None).normalize() # Make latest_receive_date timezone-naive
months_diff = (today - latest_receive_date).days / 30
if months_diff > 24:
return 'Quotation to be assessed > 24 months'
else:
return 'Quotation to be assessed < 24 months'
else:
return row['Quotation_Status']
df['Quotation_Status'] = df.apply(lambda row: handle_quotation_status(row, df), axis=1)
df['Receive_Date'] = df['Receive_Date'].apply(pd.to_datetime) + pd.Timedelta(hours=8)
def handle_ce_status(row, df):
same_event_df = df[df['NEC_Event_No'] == row['NEC_Event_No']]
doc_types = same_event_df['NEC_Doc_Type'].unique()
same_event_df.sort_values(by='Receive_Date', axis=0, ascending=False, inplace=True)
today = pd.Timestamp.today().tz_localize(None).normalize()
if 'QA-' in doc_types:
latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'QA-'].iloc[0]
try:
latest_row_PMN = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMN-'].iloc[0]
except IndexError:
latest_row_PMN = None # Handle the case where no 'PMN-' row exists
if row['NEC_Doc_Type'] == 'QA-' and row['Receive_Date'] == latest_row['Receive_Date']:
if latest_row_PMN is None:
return 'CE implemented', 'No Subject Available'
return 'CE implemented', latest_row_PMN['Subject']
elif 'CSQ-' in doc_types:
latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'CSQ-'].iloc[0]
# Check if there are any rows with 'NEC_Doc_Type' == 'PMI-'
pmn_rows = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMN-']
# if pmn_rows.empty:
# # Raise an error and include the full dataframe in the message
# raise IndexError(f"No rows found for NEC_Doc_Type == 'PMI-' in the same_event_df dataframe.\nFull DataFrame:\n{same_event_df}")
if row['NEC_Doc_Type'] == 'CSQ-' and row['Receive_Date'] == latest_row['Receive_Date'] and not pmn_rows.empty:
latest_row_compare = pmn_rows.iloc[0]
latest_receive_date = row['Receive_Date'].tz_localize(None).normalize()
latest_receive_date_compare = latest_row_compare['Receive_Date'].tz_localize(None).normalize()
months_diff = (today - latest_receive_date_compare).days / 365
if months_diff > 2:
if latest_row_compare is None:
return 'Quotation to be assessed > 24 months', 'No Subject Available'
return 'Quotation to be assessed > 24 months', latest_row_compare['Subject']
else:
if latest_row_compare is None:
return 'Quotation to be assessed < 24 months', 'No Subject Available'
return 'Quotation to be assessed < 24 months', latest_row_compare['Subject']
elif 'PMIQ-' in doc_types:
latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMIQ-'].iloc[0]
try:
latest_row_PMN = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMN-'].iloc[0]
except IndexError:
latest_row_PMN = None # Handle the case where no 'PMN-' row exists
if row['NEC_Doc_Type'] == 'PMIQ-' and (row['Receive_Date'] == latest_row['Receive_Date'] or row['Receive_Date'] == latest_row_PMN['Receive_Date']):
# Calculate the difference in months
latest_receive_date = row['Receive_Date'].tz_localize(None).normalize()
months_diff = (today - latest_receive_date).days / 365
if months_diff > 2:
if latest_row_PMN is None:
return 'Quotation to be submitted > 24 months', 'No Subject Available'
return 'Quotation to be submitted > 24 months', latest_row_PMN['Subject']
else:
if latest_row_PMN is None:
return 'Quotation to be submitted < 24 months', 'No Subject Available'
return 'Quotation to be submitted < 24 months', latest_row_PMN['Subject']
elif 'PMN-' in doc_types:
latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMIQ-'].iloc[0]
try:
latest_row_PMN = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMN-'].iloc[0]
except IndexError:
latest_row_PMN = None # Handle the case where no 'PMN-' row exists
if row['NEC_Doc_Type'] == 'PMN-' and (row['Receive_Date'] == latest_row['Receive_Date'] or row['Receive_Date'] == latest_row_PMN['Receive_Date']):
# Calculate the difference in months
latest_receive_date = row['Receive_Date'].tz_localize(None).normalize()
months_diff = (today - latest_receive_date).days / 365
if months_diff > 2:
if latest_row_PMN is None:
return 'Quotation to be submitted > 24 months', 'No Subject Available'
return 'Quotation to be submitted > 24 months', latest_row_PMN['Subject']
else:
if latest_row_PMN is None:
return 'Quotation to be submitted < 24 months', 'No Subject Available'
return 'Quotation to be submitted < 24 months', latest_row_PMN['Subject']
elif 'PMI-' in doc_types:
latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMI-'].iloc[0]
try:
latest_row_PMN = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMN-'].iloc[0]
except IndexError:
latest_row_PMN = None # Handle the case where no 'PMN-' row exists
if row['NEC_Doc_Type'] == 'PMI-' and (row['Receive_Date'] == latest_row['Receive_Date'] or row['Receive_Date'] == latest_row_PMN['Receive_Date']) and row['NEC_Clause'] != '61.2':
# Calculate the difference in months
latest_receive_date = row['Receive_Date'].tz_localize(None).normalize()
months_diff = (today - latest_receive_date).days / 365
if months_diff > 2:
if latest_row_PMN is None:
return 'Quotation to be submitted > 24 months', 'No Subject Available'
return 'Quotation to be submitted > 24 months', latest_row_PMN['Subject']
else:
if latest_row_PMN is None:
return 'Quotation to be submitted < 24 months', 'No Subject Available'
return 'Quotation to be submitted < 24 months', latest_row_PMN['Subject']
if row['NEC_Doc_Type'] == 'PMI-' and row['NEC_Clause'] != '61.2':
# Print the NEC_Clause of the current row
if latest_row_PMN is None:
return 'CE to be notified', 'No Subject Available'
return 'CE to be notified', latest_row_PMN['Subject']
elif 'NCE-' in doc_types:
latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'NCE-'].iloc[0]
try:
latest_row_PMN = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMN-'].iloc[0]
except IndexError:
latest_row_PMN = None # Handle the case where no 'PMN-' row exists
if row['NEC_Doc_Type'] == 'NCE-' and row['NEC_Clause'] != '61.2':
# Print the NEC_Clause of the current row
if latest_row_PMN is None:
return 'CE to be notified', 'No Subject Available'
return 'CE to be notified', latest_row_PMN['Subject']
return '', ''
df['CE_Status'], df['Subject'] = zip(*df.apply(lambda row: handle_ce_status(row, df), axis=1))
# df[['CE_Status', 'PMN_Subject']] = df.apply(lambda row: handle_ce_status(row, df), axis=1)
# df['CE_Status'] = df.apply(lambda row: handle_ce_status(row, df), axis=1)
df['Receive_Date'] = df['Receive_Date'].apply(pd.to_datetime) + pd.Timedelta(hours=8)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
df.to_sql('c5_nec_cas', con=conn, if_exists='replace', index= False)
conn.close()
# Risk Registry
resData = getWorkflowData(token, "638b33a4a1faf60c870388c2")
db = create_engine(conn_string)
conn = db.connect()
df = pd.DataFrame()
with conn as conn:
for x in resData:
df_nested_list = json_normalize(x['data'])
df2 = df_nested_list
if x['data']['Date of Early Warning'] == None:
Date_of_Early_Warning = datetime.now(timezone.utc)
else:
Date_of_Early_Warning = datetime.strptime(x['data']['Date of Early Warning'], '%Y-%m-%dT%H:%M:%S.%f%z')
if x['data']['Date of Close of EW'] == None:
Date_of_Close_of_EW = datetime.now(timezone.utc)
else:
Date_of_Close_of_EW = datetime.strptime(x['data']['Date of Close of EW'], '%Y-%m-%dT%H:%M:%S.%f%z')
# print((Date_of_Close_of_EW - Date_of_Early_Warning))
if (Date_of_Close_of_EW - Date_of_Early_Warning) > np.timedelta64(24, 'h'):
df2['Elapsed_Time'] = ((Date_of_Close_of_EW - Date_of_Early_Warning))
else:
df2['Elapsed_Time'] = np.timedelta64(0, 'D')
if (df2['Elapsed_Time'] >= np.timedelta64(365, 'D')).bool():
df2['Elapsed_Time_more_then_1_year'] = True
else:
df2['Elapsed_Time_more_then_1_year'] = False
df2['Elapsed_Time'] = df2['Elapsed_Time'] / 1000 / 1000 / 86400000
df = df.append(df2)
df['Date of Close of EW']=df['Date of Close of EW'].apply(pd.to_datetime)
df['Date of Close of EW'] = df['Date of Close of EW'] - pd.Timedelta(hours=8)
df['Date of Early Warning']=df['Date of Early Warning'].apply(pd.to_datetime)
df['Date of Early Warning'] = df['Date of Early Warning'] - pd.Timedelta(hours=8)
# df['Action Party (CEDD / AECOM / CW-KL JV)']=np.array(df['Action Party (CEDD / AECOM / CRCC-PY JV)'].tolist())
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('/', '_').str.replace('%', 'percent')
# df['Action_Party___CEDD_/_AECOM_/_DCK_JV']=np.array(df['Action_Party___CEDD_/_AECOM_/_DCK_JV'].tolist())
df.to_sql('c5_nec_risk_register', con=conn, if_exists='replace', index= False)
conn.close()
# resData = getWorkflowData(token, "638b33a4a1faf60c870388c2")
# db = create_engine(conn_string)
# conn = db.connect()
# df = pd.DataFrame()
# with conn as conn:
# for x in resData:
# df_nested_list = json_normalize(x['data'])
# df2 = df_nested_list
# if x['data']['Date of Early Warning'] == None:
# Date_of_Early_Warning = datetime.now(timezone.utc)
# else:
# Date_of_Early_Warning = datetime.strptime(x['data']['Date of Early Warning'], '%Y-%m-%dT%H:%M:%S.%f%z')
# if x['data']['Date of Close of EW'] == None:
# Date_of_Close_of_EW = datetime.now(timezone.utc)
# else:
# Date_of_Close_of_EW = datetime.strptime(x['data']['Date of Close of EW'], '%Y-%m-%dT%H:%M:%S.%f%z')
# # print((Date_of_Close_of_EW - Date_of_Early_Warning))
# if (Date_of_Close_of_EW - Date_of_Early_Warning) > np.timedelta64(24, 'h'):
# df2['Elapsed_Time'] = ((Date_of_Close_of_EW - Date_of_Early_Warning))
# else:
# df2['Elapsed_Time'] = np.timedelta64(0, 'D')
# if (df2['Elapsed_Time'] >= np.timedelta64(365, 'D')).bool():
# df2['Elapsed_Time_more_then_1_year'] = True
# else:
# df2['Elapsed_Time_more_then_1_year'] = False
# df2['Elapsed_Time'] = df2['Elapsed_Time'] / 1000 / 1000 / 86400000
# df = df.append(df2)
# df['Date of Close of EW']=df['Date of Close of EW'].apply(pd.to_datetime)
# df['Date of Close of EW'] = df['Date of Close of EW'] - pd.Timedelta(hours=8)
# df['Date of Early Warning']=df['Date of Early Warning'].apply(pd.to_datetime)
# df['Date of Early Warning'] = df['Date of Early Warning'] - pd.Timedelta(hours=8)
# # df['Action Party (CEDD / AECOM / CW-KL JV)']=np.array(df['Action Party (CEDD / AECOM / CRCC-PY JV)'].tolist())
# df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('/', '_').str.replace('%', 'percent')
# # df['Action_Party___CEDD_/_AECOM_/_DCK_JV']=np.array(df['Action_Party___CEDD_/_AECOM_/_DCK_JV'].tolist())
# df.to_sql('c5_nec_risk_register', con=conn, if_exists='replace', index= False)
# */2 * * * * Execute every two minute
with DAG(
dag_id="c5_nec",
schedule_interval="0 0,4,8,11,16 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2022, 10, 24)
},
catchup=False) as f:
pipelineProcess = PythonOperator(
task_id="pipelineProcess",
python_callable=pipelineProcess,
provide_context=True,
)
# getWorkflowRecords = PythonOperator(
# task_id="getWorkflowRecords",
# python_callable=getWorkflowRecords,
# provide_context=True,
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
# create_table = PostgresOperator(
# sql = create_table_sql_query,
# task_id = "create_table_task",
# postgres_conn_id = "postgres_rds",
# )
# insert_data = PostgresOperator(
# sql = insert_data_sql_query,
# task_id = "insertData_sql_query_task",
# postgres_conn_id = "postgres_rds",
# )
# getDrowToken >> pipelineProcess >> getWorkflowRecords
getDrowToken >> pipelineProcess
|