DAG: c4_nec_risk_reg

schedule: 0 0,4,8,11,16 * * *


c4_nec_risk_reg

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
try:

    from datetime import datetime, timezone, timedelta
    from airflow import DAG
    
    from airflow.operators.python_operator import PythonOperator
    from airflow.operators.http_operator import SimpleHttpOperator
    from datetime import datetime
    from pandas.io.json import json_normalize
    from airflow.operators.postgres_operator import PostgresOperator

    import pandas as pd
    import json
    import requests
    import numpy as np

    import psycopg2
    from sqlalchemy import create_engine

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://drow.cloud"

def getDrowToken(**context):
    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
    "username": "icwp2@drow.cloud",
    "password": "dGVzdDAxQHRlc3QuY29t"
    }
    ).json()
    context["ti"].xcom_push(key="token", value=response['token'])

def getSheetData(token , sheetId):
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/sheets/{sheetId}?with_records=true&fields=",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    sheet = json.loads(response.text)
    headers = sheet['header']
    record = sheet['record']
    dataToExtract=[]
    for d in record: 
        objectToPush = {}
        for v in d['values']:
            for c in headers:
                colNameToExtract = c['colName']
                if v['colName'] == colNameToExtract:
                    # # print(v)
                    if v.get('multValue') != None:
                        if v['multValue'] == True:
                            if v['colType'] == 'Table':
                                tObjectArray = []
                                for t in v['tableValue']:
                                    tObjectToPush = {}
                                    for s in t['subValues']:
                                        tObjectToPush[s['colName']] = s.value
                                    tObjectArray.push(tObjectToPush)
                            else:
                                objectToPush[v['colName']] = v['valueArray']
                        else:
                            if v.get('value') != None:
                                if v.get('value') == 'NA':
                                    objectToPush[v['colName']] = None
                                else:
                                    objectToPush[v['colName']] = v['value']
                            else:
                                objectToPush[v['colName']] = None
                    else:
                        if v.get('value') != None:
                            if v.get('value') == 'NA':
                                objectToPush[v['colName']] = None
                            else:
                                objectToPush[v['colName']] = v['value']
                        else:
                            objectToPush[v['colName']] = None
        dataToExtract.append(objectToPush)
    return dataToExtract

def getWorkflowData(token , workflowId):
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/{workflowId}?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    return json.loads(response.text)

def getdrowPSQLConnectionString():
    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  

    # User name of the database server
    dbUserName            = 'dRowAdmin'  

    # Password for the database user
    dbUserPassword        = 'drowsuper'  

    # Name of the database 
    database              = 'drowDateWareHouse'

    # Character set
    charSet               = "utf8mb4"  

    port                  = "5432"

    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    return conn_string

def pipelineProcess(**context):
    token = context.get("ti").xcom_pull(key="token")
    conn_string = getdrowPSQLConnectionString()
    # Risk Registry
    # resData = getSheetData(token, "6401bd8313fd360c96fba6d0")
    # db = create_engine(conn_string)
    # conn = db.connect()
    # df = pd.DataFrame()
    # with conn as conn:
    #     for x in resData:
    #         df_nested_list = json_normalize(x)
    #         df2 = df_nested_list
    #         print(x)
    #         if x['Date of Early Warning  (EW)'] == None or x['Date of Early Warning  (EW)'] == "N/A" or x['Date of Early Warning  (EW)'] == "":
    #             Date_of_Early_Warning = datetime.now()
    #         else:
    #             Date_of_Early_Warning = datetime.strptime(x['Date of Early Warning  (EW)'][0:24], '%a %b %d %Y %H:%M:%S')
    #         if x['Date of Close of EW'] == None or x['Date of Close of EW'] == "N/A" or x['Date of Close of EW'] == "":
    #             Date_of_Close_of_EW = datetime.now()
    #         else: 
    #             Date_of_Close_of_EW = datetime.strptime(x['Date of Close of EW'][0:24], '%a %b %d %Y %H:%M:%S')
    #         if (Date_of_Close_of_EW - Date_of_Early_Warning) > np.timedelta64(24, 'h'):
    #             df2['Elapsed_Time'] = ((Date_of_Close_of_EW - Date_of_Early_Warning))
    #         else:
    #             df2['Elapsed_Time'] = np.timedelta64(0, 'D')
    #         if (df2['Elapsed_Time'] >= np.timedelta64(365, 'D')).bool():
    #             df2['Elapsed_Time_more_then_1_year'] = True
    #         else:
    #             df2['Elapsed_Time_more_then_1_year'] = False
    #         df2['Elapsed_Time'] = df2['Elapsed_Time'] / 1000 / 1000 / 86400000
    #         df = df.append(df2)

    #     df['Date of Close of EW']=df['Date of Close of EW'].apply(lambda row : datetime.now() if (row=="N/A" or row== None or row == "") else datetime.strptime(row[0:24], '%a %b %d %Y %H:%M:%S'))
    #     df['Date of Close of EW'] = df['Date of Close of EW'] - pd.Timedelta(hours=8)
    #     df['Date of Early Warning']=df['Date of Early Warning  (EW)'].apply(lambda row : datetime.now() if (row=="N/A" or row== None or row == "") else datetime.strptime(row[0:24], '%a %b %d %Y %H:%M:%S'))
    #     df['Date of Early Warning'] = df['Date of Early Warning'] - pd.Timedelta(hours=8)
    #     # df['Action Party (CEDD / AECOM / BKREJV)']=df['Action Party (CEDD / AECOM / BKREJV)']
    #     df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('/', '_').str.replace('%', 'percent')
    #     # df['Action_Party___CEDD_/_AECOM_/_DCK_JV']=np.array(df['Action_Party___CEDD_/_AECOM_/_DCK_JV'].tolist())
    #     df.to_sql('c4_nec_risk_register', con=conn, if_exists='replace', index= False)

    resData = getWorkflowData(token, "61e95dc8a6d0ad434015b52d")
    db = create_engine(conn_string)
    conn = db.connect()
    df = pd.DataFrame()
    with conn as conn:
        for x in resData:
            df_nested_list = json_normalize(x['data'])
            df2 = df_nested_list
            if x['data']['Date of Early Warning'] == None:
                Date_of_Early_Warning = datetime.now(timezone.utc)
            else: 
                Date_of_Early_Warning = datetime.strptime(x['data']['Date of Early Warning'], '%Y-%m-%dT%H:%M:%S.%f%z')
            if x['data']['Date of Close of EW'] == None:
                Date_of_Close_of_EW = datetime.now(timezone.utc)
            else: 
                Date_of_Close_of_EW = datetime.strptime(x['data']['Date of Close of EW'], '%Y-%m-%dT%H:%M:%S.%f%z')
            # print((Date_of_Close_of_EW - Date_of_Early_Warning))
            if (Date_of_Close_of_EW - Date_of_Early_Warning) > np.timedelta64(24, 'h'):
                df2['Elapsed_Time'] = ((Date_of_Close_of_EW - Date_of_Early_Warning))
            else:
                df2['Elapsed_Time'] = np.timedelta64(0, 'D')
            if (df2['Elapsed_Time'] >= np.timedelta64(365, 'D')).bool():
                df2['Elapsed_Time_more_then_1_year'] = True
            else:
                df2['Elapsed_Time_more_then_1_year'] = False
            df2['Elapsed_Time'] = df2['Elapsed_Time'] / 1000 / 1000 / 86400000
            # if(df2['Action Party (CEDD / AECOM / DCK JV)'].isnull().bool()):
            #     df2['Action Party (CEDD / AECOM / DCK JV)'] = []
            df = df.append(df2)

        df['Date of Close of EW']=df['Date of Close of EW'].apply(pd.to_datetime)
        df['Date of Close of EW'] = df['Date of Close of EW'] - pd.Timedelta(hours=8)
        df['Date of Early Warning']=df['Date of Early Warning'].apply(pd.to_datetime)
        df['Date of Early Warning'] = df['Date of Early Warning'] - pd.Timedelta(hours=8)
        # df['Action Party (CEDD / AECOM / DCK JV)']=np.array(df['Action Party (CEDD / AECOM / DCK JV)'].tolist())
        df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('/', '_').str.replace('%', 'percent')
        df['Action_Party___CEDD___AECOM___DCK_JV'] = df['Action_Party___CEDD___AECOM___DCK_JV'].astype(str)
        df['EW_or_Programme_Checklist'] = df['EW_or_Programme_Checklist'].astype(str)
        # df.drop(df['Action_Party___CEDD___AECOM___DCK_JV'])
        df.to_sql('c4_nec_risk_register', con=conn, if_exists='replace', index= False)


# */2 * * * * Execute every two minute 
with DAG(
        dag_id="c4_nec_risk_reg",
        schedule_interval="0 0,4,8,11,16 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2022, 10, 24)
        },
        catchup=False) as f:
    
    pipelineProcess = PythonOperator(
        task_id="pipelineProcess",
        python_callable=pipelineProcess,
        provide_context=True,
    )
    
    # getWorkflowRecords = PythonOperator(
    #     task_id="getWorkflowRecords",
    #     python_callable=getWorkflowRecords,
    #     provide_context=True,
    # )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
        # op_kwargs={"name": "Dylan"}
    )
    

    # create_table = PostgresOperator(
    #     sql = create_table_sql_query,
    #     task_id = "create_table_task",
    #     postgres_conn_id = "postgres_rds",
    # )

    # insert_data = PostgresOperator(
    #     sql = insert_data_sql_query,
    #     task_id = "insertData_sql_query_task",
    #     postgres_conn_id = "postgres_rds",
    # )

# getDrowToken >> pipelineProcess >> getWorkflowRecords
getDrowToken >> pipelineProcess