1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245 | try:
from datetime import datetime, timezone, timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import psycopg2
from sqlalchemy import create_engine
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
def getSheetData(token , sheetId):
response = requests.get(
url=f"{dRoW_api_end_url}/api/sheets/{sheetId}?with_records=true&fields=",
headers={
"x-access-token": f"Bearer {token}",
}
)
sheet = json.loads(response.text)
headers = sheet['header']
record = sheet['record']
dataToExtract=[]
for d in record:
objectToPush = {}
for v in d['values']:
for c in headers:
colNameToExtract = c['colName']
if v['colName'] == colNameToExtract:
# # print(v)
if v.get('multValue') != None:
if v['multValue'] == True:
if v['colType'] == 'Table':
tObjectArray = []
for t in v['tableValue']:
tObjectToPush = {}
for s in t['subValues']:
tObjectToPush[s['colName']] = s.value
tObjectArray.push(tObjectToPush)
else:
objectToPush[v['colName']] = v['valueArray']
else:
if v.get('value') != None:
if v.get('value') == 'NA':
objectToPush[v['colName']] = None
else:
objectToPush[v['colName']] = v['value']
else:
objectToPush[v['colName']] = None
else:
if v.get('value') != None:
if v.get('value') == 'NA':
objectToPush[v['colName']] = None
else:
objectToPush[v['colName']] = v['value']
else:
objectToPush[v['colName']] = None
dataToExtract.append(objectToPush)
return dataToExtract
def getWorkflowData(token , workflowId):
response = requests.get(
url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/{workflowId}?export_type=0",
headers={
"x-access-token": f"Bearer {token}",
}
)
return json.loads(response.text)
def getdrowPSQLConnectionString():
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
return conn_string
def pipelineProcess(**context):
token = context.get("ti").xcom_pull(key="token")
conn_string = getdrowPSQLConnectionString()
# Risk Registry
# resData = getSheetData(token, "6401bd8313fd360c96fba6d0")
# db = create_engine(conn_string)
# conn = db.connect()
# df = pd.DataFrame()
# with conn as conn:
# for x in resData:
# df_nested_list = json_normalize(x)
# df2 = df_nested_list
# print(x)
# if x['Date of Early Warning (EW)'] == None or x['Date of Early Warning (EW)'] == "N/A" or x['Date of Early Warning (EW)'] == "":
# Date_of_Early_Warning = datetime.now()
# else:
# Date_of_Early_Warning = datetime.strptime(x['Date of Early Warning (EW)'][0:24], '%a %b %d %Y %H:%M:%S')
# if x['Date of Close of EW'] == None or x['Date of Close of EW'] == "N/A" or x['Date of Close of EW'] == "":
# Date_of_Close_of_EW = datetime.now()
# else:
# Date_of_Close_of_EW = datetime.strptime(x['Date of Close of EW'][0:24], '%a %b %d %Y %H:%M:%S')
# if (Date_of_Close_of_EW - Date_of_Early_Warning) > np.timedelta64(24, 'h'):
# df2['Elapsed_Time'] = ((Date_of_Close_of_EW - Date_of_Early_Warning))
# else:
# df2['Elapsed_Time'] = np.timedelta64(0, 'D')
# if (df2['Elapsed_Time'] >= np.timedelta64(365, 'D')).bool():
# df2['Elapsed_Time_more_then_1_year'] = True
# else:
# df2['Elapsed_Time_more_then_1_year'] = False
# df2['Elapsed_Time'] = df2['Elapsed_Time'] / 1000 / 1000 / 86400000
# df = df.append(df2)
# df['Date of Close of EW']=df['Date of Close of EW'].apply(lambda row : datetime.now() if (row=="N/A" or row== None or row == "") else datetime.strptime(row[0:24], '%a %b %d %Y %H:%M:%S'))
# df['Date of Close of EW'] = df['Date of Close of EW'] - pd.Timedelta(hours=8)
# df['Date of Early Warning']=df['Date of Early Warning (EW)'].apply(lambda row : datetime.now() if (row=="N/A" or row== None or row == "") else datetime.strptime(row[0:24], '%a %b %d %Y %H:%M:%S'))
# df['Date of Early Warning'] = df['Date of Early Warning'] - pd.Timedelta(hours=8)
# # df['Action Party (CEDD / AECOM / BKREJV)']=df['Action Party (CEDD / AECOM / BKREJV)']
# df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('/', '_').str.replace('%', 'percent')
# # df['Action_Party___CEDD_/_AECOM_/_DCK_JV']=np.array(df['Action_Party___CEDD_/_AECOM_/_DCK_JV'].tolist())
# df.to_sql('c4_nec_risk_register', con=conn, if_exists='replace', index= False)
resData = getWorkflowData(token, "61e95dc8a6d0ad434015b52d")
db = create_engine(conn_string)
conn = db.connect()
df = pd.DataFrame()
with conn as conn:
for x in resData:
df_nested_list = json_normalize(x['data'])
df2 = df_nested_list
if x['data']['Date of Early Warning'] == None:
Date_of_Early_Warning = datetime.now(timezone.utc)
else:
Date_of_Early_Warning = datetime.strptime(x['data']['Date of Early Warning'], '%Y-%m-%dT%H:%M:%S.%f%z')
if x['data']['Date of Close of EW'] == None:
Date_of_Close_of_EW = datetime.now(timezone.utc)
else:
Date_of_Close_of_EW = datetime.strptime(x['data']['Date of Close of EW'], '%Y-%m-%dT%H:%M:%S.%f%z')
# print((Date_of_Close_of_EW - Date_of_Early_Warning))
if (Date_of_Close_of_EW - Date_of_Early_Warning) > np.timedelta64(24, 'h'):
df2['Elapsed_Time'] = ((Date_of_Close_of_EW - Date_of_Early_Warning))
else:
df2['Elapsed_Time'] = np.timedelta64(0, 'D')
if (df2['Elapsed_Time'] >= np.timedelta64(365, 'D')).bool():
df2['Elapsed_Time_more_then_1_year'] = True
else:
df2['Elapsed_Time_more_then_1_year'] = False
df2['Elapsed_Time'] = df2['Elapsed_Time'] / 1000 / 1000 / 86400000
# if(df2['Action Party (CEDD / AECOM / DCK JV)'].isnull().bool()):
# df2['Action Party (CEDD / AECOM / DCK JV)'] = []
df = df.append(df2)
df['Date of Close of EW']=df['Date of Close of EW'].apply(pd.to_datetime)
df['Date of Close of EW'] = df['Date of Close of EW'] - pd.Timedelta(hours=8)
df['Date of Early Warning']=df['Date of Early Warning'].apply(pd.to_datetime)
df['Date of Early Warning'] = df['Date of Early Warning'] - pd.Timedelta(hours=8)
# df['Action Party (CEDD / AECOM / DCK JV)']=np.array(df['Action Party (CEDD / AECOM / DCK JV)'].tolist())
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('/', '_').str.replace('%', 'percent')
df['Action_Party___CEDD___AECOM___DCK_JV'] = df['Action_Party___CEDD___AECOM___DCK_JV'].astype(str)
df['EW_or_Programme_Checklist'] = df['EW_or_Programme_Checklist'].astype(str)
# df.drop(df['Action_Party___CEDD___AECOM___DCK_JV'])
df.to_sql('c4_nec_risk_register', con=conn, if_exists='replace', index= False)
# */2 * * * * Execute every two minute
with DAG(
dag_id="c4_nec_risk_reg",
schedule_interval="0 0,4,8,11,16 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2022, 10, 24)
},
catchup=False) as f:
pipelineProcess = PythonOperator(
task_id="pipelineProcess",
python_callable=pipelineProcess,
provide_context=True,
)
# getWorkflowRecords = PythonOperator(
# task_id="getWorkflowRecords",
# python_callable=getWorkflowRecords,
# provide_context=True,
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
# create_table = PostgresOperator(
# sql = create_table_sql_query,
# task_id = "create_table_task",
# postgres_conn_id = "postgres_rds",
# )
# insert_data = PostgresOperator(
# sql = insert_data_sql_query,
# task_id = "insertData_sql_query_task",
# postgres_conn_id = "postgres_rds",
# )
# getDrowToken >> pipelineProcess >> getWorkflowRecords
getDrowToken >> pipelineProcess
|