DAG: 5wsd21_cleaning

schedule: 0 7,15 * * *


5wsd21_cleaning

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
try:

    from datetime import timedelta
    from airflow import DAG
    
    from airflow.operators.python_operator import PythonOperator
    from airflow.operators.http_operator import SimpleHttpOperator
    from datetime import datetime
    from pandas.io.json import json_normalize
    from airflow.operators.postgres_operator import PostgresOperator

    import pandas as pd
    import json
    import requests
    import numpy as np

    import psycopg2
    from sqlalchemy import create_engine
    #print("All Dag moudules are sucessfully imported")

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://drow.cloud"

def getDrowToken(**context):
    # response = SimpleHttpOperator(
    #     task_id="getDrowToken",
    #     http_conn_id="getDrowToken",
    #     endpoint="https://uat2.drow.cloud/api/auth/authenticate",
    #     method="POST",
    #     data={
    #     "username": "icwp2@drow.cloud",
    #     "password": "dGVzdDAxQHRlc3QuY29t"
    #     },
    #     xcom_push=True,
    # )

    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
    "username": "icwp2@drow.cloud",
    "password": "dGVzdDAxQHRlc3QuY29t"
    }
    ).json()
    context["ti"].xcom_push(key="token", value=response['token'])
    # return 'DLLM{}'.format(response)


def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/626d7cd38fa17e0c8f2a9723?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    }
    )
    #print('got_data')
    RISC_Data = json.loads(response.text)
    Mapping= {
    # "f2_checked_by_supd_on_date" : "f2_checked_by_supd_on_date", 
    "A1 Inspection Date" : "a01a_inspection_date",
    # "D4 Submission Date" : "d4_submission_date",
    "Daily Cleansing or Weekly Tidying": "a2_daily_or_weekly"
    }
    #print('start transform')
    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  

        # User name of the database server
    dbUserName            = 'dRowAdmin'  

    # Password for the database user
    dbUserPassword        = 'drowsuper'  

    # Name of the database 
    database              = 'drowDateWareHouse'

    # Character set
    charSet               = "utf8mb4"  

    port                  = "5432"

    # #cursor Type
    # cusrsorType            = pymysql.cursors.DictCursor



    #create_engine('mysql+mysqldb://root:password@localhost:3306/mydbname', echo = False)
    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)

    # df = context.get("ti").xcom_pull(key="InsertData")
    # print(df)
    # conn_string = 'postgres://user:password@host/data1'
    
    db = create_engine(conn_string)
    conn = db.connect()
    #print('db connected')
    with conn as conn:
        df = pd.DataFrame()
        for x in RISC_Data:
            #print(x)
            df_nested_list = json_normalize(x['data'])
            #print('process 1')
            # df2["a10_request_submission_date_time"] = request_date
            
            df2 = df_nested_list.reindex(columns=Mapping.keys())
            if len(x['ApproveLogSummary']) > 0:
                # request_date = pd.to_datetime(df2["C1 - Inspect on Date Time"]) - pd.Timedelta(days=1)
                request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B: RSS sign"]
                if len(request_data) > 0 and 'from' in request_data[-1]:
                    df2['f2_checked_by_supd_on_date'] = request_data[-1]['from']
                else:
                    df2['f2_checked_by_supd_on_date'] = None
                if len(request_data) > 0 and 'to' in request_data[-1]:
                    df2['d4_submission_date'] = request_data[-1]['to']
                else:
                    df2['d4_submission_date'] = None
            else:
                df2['f2_checked_by_supd_on_date'] = None
                df2['d4_submission_date'] = None
                
            df2["report_name"] = df2["A1 Inspection Date"].astype(str).str[:10] + df2["Daily Cleansing or Weekly Tidying"]
            if len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="Z: END"])>0:
                df2['report_complete_or_incomplete'] = 'complete'
            else:
                df2['report_complete_or_incomplete'] = 'incomplete'
            if 'data' in x and isinstance(x['data'], dict):
                for key in x['data']:
                    if 'Checklist' in key:
                        total_report = 0
                        total_x = 0
                        for item in x['data'][key]:
                            for item_key in item:
                                total_report += 1
                                if item_key.endswith('Condition') and item[item_key] == 'X':
                                    total_x += 1
                        df2['nc_report_item'] = total_x
                        df2['total_report_item'] = total_report
                    
            # if not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['d4_submission_date'].isnull().bool() and (df2["f2_checked_by_supd_on_date"].astype('datetime64[ns]') > df2["d4_submission_date"].astype('datetime64[ns]')).bool():
            #     df2['nc_report'] = True
            # else:
            #     df2['nc_report'] = False
            if (not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['A1 Inspection Date'].isnull().bool()):
                df2['complete_time_in_days'] = (((df2['f2_checked_by_supd_on_date'].astype('datetime64[ns]') - 
                df2['A1 Inspection Date'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
                if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
                    df2['complete_time_in_days'] = 0
            else:
                df2['complete_time_in_days'] = 0

            df2.rename(columns=Mapping, inplace=True)
            df = df.append(df2)
        df['a01a_inspection_date']=df['a01a_inspection_date'].apply(pd.to_datetime)
        df['d4_submission_date']=df['d4_submission_date'].apply(pd.to_datetime)
        df['f2_checked_by_supd_on_date']=df['f2_checked_by_supd_on_date'].apply(pd.to_datetime)
        df.to_sql('cleansing_5wsd21', con=conn, if_exists='replace', index= False)
    

# id SERIAL
create_table_sql_query = """ 
    CREATE TABLE IF NOT EXISTS cleansing_5wsd21 (
    f2_checked_by_supd_on_date TIMESTAMP,
    a01a_inspection_date TIMESTAMP,
    d4_submission_date TIMESTAMP,
    a2_daily_or_weekly VARCHAR (100),
    report_name VARCHAR (100),
    report_complete_or_incomplete VARCHAR (100),
    nc_report BOOLEAN,
    complete_time_in_days NUMERIC(10,2)
    );
    """


# */2 * * * * Execute every two minute 
with DAG(
        dag_id="5wsd21_cleaning",
        schedule_interval="0 7,15 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2023, 1, 17)
        },
        catchup=False) as f:
    
    getMongoDB = PythonOperator(
        task_id="getMongoDB",
        python_callable=getMongoDB,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    # reformData = PythonOperator(
    #     task_id="reformData",
    #     python_callable=reformData,
    #     provide_context=True,
    #     # op_kwargs={"name": "Dylan"}
    # )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
        # op_kwargs={"name": "Dylan"}
    )

    # insertData = PythonOperator(
    #     task_id="insetDateToPG",
    #     python_callable=insertData,
    #     provide_context=True,
    #     # op_kwargs={"name": "Dylan"}
    # )

    create_table = PostgresOperator(
        sql = create_table_sql_query,
        task_id = "create_table_task",
        postgres_conn_id = "postgres_rds",
    )

    # insert_data = PostgresOperator(
    #     sql = insert_data_sql_query,
    #     task_id = "insertData_sql_query_task",
    #     postgres_conn_id = "postgres_rds",
    # )



# getDrowToken >> getMongoDB >> reformData >> create_table
# create_table >> getDrowToken >> getMongoDB >> reformData >> insertData
# getDrowToken >> getMongoDB >> reformData >> insertData
create_table >> getDrowToken >> getMongoDB