1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316 | try:
import json
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import psycopg2
import requests
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from pandas.io.json import json_normalize
from sqlalchemy import create_engine
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://uat2.drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "keexiansuen@drow.cloud",
"password": "c3UxMTk5a3ghIQ==",
}).json()
context["ti"].xcom_push(key="token", value=response['token'])
def getMongoDB(**context):
token = context.get("ti").xcom_pull(key="token")
response = requests.get(
url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/60cac3736e0eeb6af04a3884?export_type=0",
headers={
"x-access-token": f"Bearer {token}",
"ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
})
RISC_Data = json.loads(response.text)
Mapping= {
"Date & Time" : "a3_date_time",
# "Follow up Summary": "c_summary_of_follow_up_actions",
}
saftey_cats=[
"1. Arc Welding",
"2. Excavation",
"3. Formwork",
"4. Temporary support to Pressure Test and Connection Pipe Works",
"5. Work in Manholes",
]
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
db = create_engine(conn_string)
conn = db.connect()
df = pd.DataFrame()
with conn as conn:
for x in RISC_Data:
df_nested_list = json_normalize(x['data'])
df2 = df_nested_list.reindex(columns=Mapping.keys())
if len(x['ApproveLogSummary']) > 0:
request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B: IOW Check"]
if len(request_data) > 0 and 'from' in request_data[-1]:
df2['sup_rep_signed_date'] = request_data[len(request_data)-1]['from']
else:
df2['sup_rep_signed_date'] = None
if len(request_data) > 0 and 'to' in request_data[-1]:
df2['contractor_rep_signed_date'] = request_data[len(request_data)-1]['to']
else:
df2['contractor_rep_signed_date'] = None
else:
df2['sup_rep_signed_date'] = None
df2['contractor_rep_signed_date'] = None
if 'Follow up Summary' in x['data'] and (len(x['data']['Follow up Summary']) > 0):
total_late_retification = 0
for summaryData in x['data']['Follow up Summary']:
if ("Agreed Due Date for Completion" in summaryData and "Agreed Due Date for Completion" in summaryData and not (summaryData["Agreed Due Date for Completion"]!='') and (not (summaryData["Date Completed"]!='')) and (summaryData["Agreed Due Date for Completion"].astype('datetime64[ns]') < summaryData["Date Completed"].astype('datetime64[ns]')).bool()):
total_late_retification += 1
else:
total_late_retification = 0
df2['total_late_retification'] = total_late_retification
if (not df2['contractor_rep_signed_date'].isnull().bool() and not df2['Date & Time'].isnull().bool()):
df2['days_complete'] = (((df2['contractor_rep_signed_date'].astype('datetime64[ns]') -
df2['Date & Time'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
if df2['days_complete'].isnull().bool() or df2['days_complete'].lt(0).bool():
df2['days_complete'] = 0
else:
df2['days_complete'] = None
df4=pd.DataFrame()
for saftey_cat in saftey_cats:
df3=df2.copy()
complete = 0
incomplete = 0
if not df2['sup_rep_signed_date'].isnull().bool():
if (len(x['data'][saftey_cat]) > 0):
for record in x['data'][saftey_cat]:
if record[saftey_cat.split(" ")[0] +' Result'] != 'Safe':
complete += 1
else:
if (len(x['data'][saftey_cat]) > 0):
for record in x['data'][saftey_cat]:
if record[saftey_cat.split(" ")[0] +' Result'] != 'Safe':
incomplete += 1
df3['saftey_cat'] = saftey_cat
df3['saftey_cat' + '_' + 'complete'] = complete
df3['saftey_cat' + '_' + 'incomplete'] = incomplete
df4 = df4.append(df3)
df2=df2.append(df4)
df = df.append(df2)
df.rename(columns=Mapping, inplace=True)
df['sup_rep_signed_date']=df['sup_rep_signed_date'].apply(pd.to_datetime)
df['contractor_rep_signed_date']=df['contractor_rep_signed_date'].apply(pd.to_datetime)
df['a3_date_time']=df['a3_date_time'].apply(pd.to_datetime)
# Remove all rows with column 'safety_cat' is null
df = df[df['saftey_cat'].notnull()]
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
# df.drop(['c_summary_of_follow_up_actions'], axis=1, inplace=True)
df.to_sql('safety_walk_1wsd19', con=conn, if_exists='replace', index= False)
def getMongoDB2(**context):
token = context.get("ti").xcom_pull(key="token")
response = requests.get(
url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/611f840fe5ba2a51bf4c524d?export_type=0",
headers={
"x-access-token": f"Bearer {token}",
"ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
})
RISC_Data = json.loads(response.text)
Mapping= {
"A03 Inspection Date time" : "a3_date_time",
"A - Follow-up Summary": "c_summary_of_follow_up_actions",
}
saftey_cats=[
"1. Earth Moving Plant (e.g. Excavators, Backhoes)",
"2. Lifting Operation",
"3. Mechanical Material Handling (Load-shifting Machinery)",
"4. Excavation",
"5. Transportation",
"6. Mechanical Plant and Equipment",
"7. Working at height",
"8. ladder & Staircase",
"9. Protection against Falling Objects",
"10. Welding / Cutting Operations and Equipment",
"11. Hand tools",
"12. Compressed Air Tools",
"13. Concrete Formworks",
"14. Woodworking Machines",
"15. Electrical Supply System, Electrical Works & Electric Hand Tools",
"16. Personal protective equipments and related facilities",
"17. Storage of dangerous goods (e.g. fuels, gas cylinders and other hazardous chemicals, paints)",
"18. Fire prevention and protection (e.g. fire extinguishers, escape routes)",
"19. Housekeeping",
"20. Noise control",
"21. Confined Spaces",
"22. Welfare Facilities",
"23. Traffic diversion and control (e.g. lighting, signing & guarding)",
"24. Other"
]
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
db = create_engine(conn_string)
conn = db.connect()
df = pd.DataFrame()
with conn as conn:
for x in RISC_Data:
df_nested_list = json_normalize(x['data'])
df2 = df_nested_list.reindex(columns=Mapping.keys())
print(df2.columns)
if len(x['ApproveLogSummary']) > 0:
request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B: SupR Check and Agree"]
if len(request_data) > 0 and 'from' in request_data[-1]:
df2['sup_rep_signed_date'] = request_data[len(request_data)-1]['from']
else:
df2['sup_rep_signed_date'] = None
if len(request_data) > 0 and 'to' in request_data[-1]:
df2['contractor_rep_signed_date'] = request_data[len(request_data)-1]['to']
else:
df2['contractor_rep_signed_date'] = None
else:
df2['sup_rep_signed_date'] = None
df2['contractor_rep_signed_date'] = None
if 'A - Follow-up Summary' in x['data'] and (len(x['data']['A - Follow-up Summary']) > 0):
total_late_retification = 0
for summaryData in x['data']['A - Follow-up Summary']:
if ("A11 Agreed Date" in summaryData and "A11 Agreed Date" in summaryData and not (summaryData["A11 Agreed Date"]!='') and (not (summaryData["A12 Date Completed"]!='')) and (summaryData["A11 Agreed Date"].astype('datetime64[ns]') < summaryData["A12 Date Completed"].astype('datetime64[ns]')).bool()):
total_late_retification += 1
else:
total_late_retification = 0
df2['total_late_retification'] = total_late_retification
if (not df2['contractor_rep_signed_date'].isnull().bool() and not df2['A03 Inspection Date time'].isnull().bool()):
df2['days_complete'] = (((df2['contractor_rep_signed_date'].astype('datetime64[ns]') -
df2['A03 Inspection Date time'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
if df2['days_complete'].isnull().bool() or df2['days_complete'].lt(0).bool():
df2['days_complete'] = 0
else:
df2['days_complete'] = None
df4=pd.DataFrame()
for saftey_cat in saftey_cats:
df3=df2.copy()
complete = 0
incomplete = 0
if saftey_cat in df_nested_list and (len(df_nested_list[saftey_cat]) > 0):
item_no = saftey_cat.split(" ")[0]
checklist_name = item_no + " Checklist"
if checklist_name in df_nested_list and len(df_nested_list[checklist_name]) > 0:
for checklist in df_nested_list[checklist_name]:
for record in checklist:
for record_key in record.keys():
if 'Result' in record_key:
if record[record_key] != "":
if not df2['sup_rep_signed_date'].isnull().bool():
complete += 1
else:
incomplete += 1
df3['saftey_cat'] = saftey_cat
df3['saftey_cat' + '_' + 'complete'] = complete
df3['saftey_cat' + '_' + 'incomplete'] = incomplete
df4 = df4.append(df3)
df2=df2.append(df4)
df = df.append(df2)
df.rename(columns=Mapping, inplace=True)
df['sup_rep_signed_date']=df['sup_rep_signed_date'].apply(pd.to_datetime)
df['contractor_rep_signed_date']=df['contractor_rep_signed_date'].apply(pd.to_datetime)
df['a3_date_time']=df['a3_date_time'].apply(pd.to_datetime)
# Remove all rows with column 'safety_cat' is null
df = df[df['saftey_cat'].notnull()]
print("Records:", df.head())
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
df.drop(['c_summary_of_follow_up_actions'], axis=1, inplace=True)
df.to_sql('safety_walk_1wsd19', con=conn, if_exists='append', index= False)
# */2 * * * * Execute every two minute
with DAG(
dag_id="1wsd19_safety_walk",
schedule_interval="0 15 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2023, 1, 17)
},
catchup=False) as f:
getMongoDB = PythonOperator(
task_id="getMongoDB",
python_callable=getMongoDB,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
getMongoDB2 = PythonOperator(
task_id="getMongoDB2",
python_callable=getMongoDB2,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
getDrowToken >> getMongoDB >> getMongoDB2
|