DAG: 1wsd19_cleaning

schedule: 0 15 * * *


1wsd19_cleaning

Toggle wrap
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
try:

    import json
    from datetime import datetime, timedelta

    import numpy as np
    import pandas as pd
    import requests
    from airflow import DAG
    from airflow.operators.python_operator import PythonOperator
    from pandas.io.json import json_normalize
    from sqlalchemy import create_engine

except Exception as e:
    print("Error {} ".format(e))

dRoW_api_end_url = "https://uat2.drow.cloud"

host            = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName      = 'dRowAdmin'
# Password for the database user
dbUserPassword  = 'drowsuper'
# Name of the database 
database        = 'drowDateWareHouse'
# Port number
port            = "5432"
# Character set
charSet         = "utf8mb4"
conn_string     = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)

def getDrowToken(**context):
    response = requests.post(
    url=f"{dRoW_api_end_url}/api/auth/authenticate",
    data={
        "username": "keexiansuen@drow.cloud",
        "password": "c3UxMTk5a3ghIQ==",
    }).json()
    context["ti"].xcom_push(key="token", value=response['token'])

def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/61304641b0bcef0cd6296597?export_type=0",
    headers={
            "x-access-token": f"Bearer {token}",
            "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
        }
    )

    RISC_Data = json.loads(response.text)
    Mapping= {
        "Period (From)" : "a01a_inspection_date",
        # "SupD signature time": "f2_checked_by_supd_on_date",
    }
    
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])

            df2 = df_nested_list.reindex(columns=Mapping.keys())
            df2.rename(columns=Mapping, inplace=True)

            df2["a2_daily_or_weekly"] = "daily"

            if len(x['ApproveLogSummary']) > 0:
                request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B: Sup Check"]
                if len(request_data) > 0 and 'from' in request_data[-1]:
                    df2['f2_checked_by_supd_on_date'] = request_data[-1]['from']
                else:
                    df2['f2_checked_by_supd_on_date'] = None
                if len(request_data) > 0 and 'to' in request_data[-1]:
                    df2['d4_submission_date'] = request_data[-1]['to']
                else:
                    df2['d4_submission_date'] = None
            else:
                df2['f2_checked_by_supd_on_date'] = None
                df2['d4_submission_date'] = None
                
            df2["report_name"] = df2["a01a_inspection_date"].astype(str).str[:10]
            if len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="Z: End"])>0 :
                df2['report_complete_or_incomplete'] = 'complete'
            else:
                df2['report_complete_or_incomplete'] = 'incomplete'

            if 'data' in x and isinstance(x['data'], dict):
                for key in x['data']:
                    if key == 'Daily Cleaning Checklist': 
                        continue
                    if 'checklist' in key.lower():
                        total_report = 0
                        total_x = 0
                        for item in x['data'][key]:
                            nc_report = False
                            for item_key in item:
                                if "item" in item_key.lower():
                                    continue
                                if item[item_key] != "✔":
                                    nc_report = True
                                    break
                            if nc_report:
                                total_x += 1
                            total_report += 1
                        df2['nc_report_item'] = total_x
                        df2['total_report_item'] = total_report

            if (not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['a01a_inspection_date'].isnull().bool()):
                df2['complete_time_in_days'] = (((df2['f2_checked_by_supd_on_date'].astype('datetime64[ns]') - 
                df2['a01a_inspection_date'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
                if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
                    df2['complete_time_in_days'] = 0
            else:
                df2['complete_time_in_days'] = 0

            df = df.append(df2)
        df['a01a_inspection_date']=df['a01a_inspection_date'].apply(pd.to_datetime)
        df['d4_submission_date']=df['d4_submission_date'].apply(pd.to_datetime)
        df['f2_checked_by_supd_on_date']=df['f2_checked_by_supd_on_date'].apply(pd.to_datetime)
        df.to_sql('cleansing_1wsd19', con=conn, if_exists='replace', index= False)


def getMongoDB2(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/61359645b0bcef0cd6501551?export_type=0",
    headers={
            "x-access-token": f"Bearer {token}",
            "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
        }
    )

    RISC_Data = json.loads(response.text)
    Mapping= {
        "Checked on" : "a01a_inspection_date",
        # "SupD signature time": "f2_checked_by_supd_on_date",
    }
    
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])

            df2 = df_nested_list.reindex(columns=Mapping.keys())
            df2.rename(columns=Mapping, inplace=True)

            df2["a2_daily_or_weekly"] = "weekly"

            if len(x['ApproveLogSummary']) > 0:
                request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B: Sup Check"]
                if len(request_data) > 0 and 'from' in request_data[-1]:
                    df2['f2_checked_by_supd_on_date'] = request_data[-1]['from']
                else:
                    df2['f2_checked_by_supd_on_date'] = None
                if len(request_data) > 0 and 'to' in request_data[-1]:
                    df2['d4_submission_date'] = request_data[-1]['to']
                else:
                    df2['d4_submission_date'] = None
            else:
                df2['f2_checked_by_supd_on_date'] = None
                df2['d4_submission_date'] = None
                
            df2["report_name"] = df2["a01a_inspection_date"].astype(str).str[:10]
            if len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="Z: End"])>0 or len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="C : Contractor Acknowledge and Archive"])>0:
                df2['report_complete_or_incomplete'] = 'complete'
            else:
                df2['report_complete_or_incomplete'] = 'incomplete'
            
            if 'data' in x and isinstance(x['data'], dict) :
                for key in x['data']:
                    if key == 'Daily Cleaning Checklist': 
                        continue
                    if 'checklist' in key.lower():
                        total_report = 0
                        total_x = 0
                        for item in x['data'][key]:
                            nc_report = False
                            for item_key in item:
                                if "result" in item_key and item[item_key] != "✓":
                                    nc_report = True
                                    break
                            if nc_report:
                                total_x += 1
                            total_report += 1
                        df2['nc_report_item'] = total_x
                        df2['total_report_item'] = total_report


            if (not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['a01a_inspection_date'].isnull().bool()):
                df2['complete_time_in_days'] = (((df2['f2_checked_by_supd_on_date'].astype('datetime64[ns]') - 
                df2['a01a_inspection_date'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
                if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
                    df2['complete_time_in_days'] = 0
            else:
                df2['complete_time_in_days'] = 0

            df = df.append(df2)
        df['a01a_inspection_date']=df['a01a_inspection_date'].apply(pd.to_datetime)
        df['d4_submission_date']=df['d4_submission_date'].apply(pd.to_datetime)
        df['f2_checked_by_supd_on_date']=df['f2_checked_by_supd_on_date'].apply(pd.to_datetime)
        df.to_sql('cleansing_1wsd19', con=conn, if_exists='append', index= False)

# id SERIAL
create_table_sql_query = """ 
    CREATE TABLE IF NOT EXISTS cleansing_1wsd19 (
    f2_checked_by_supd_on_date TIMESTAMP,
    a01a_inspection_date TIMESTAMP,
    d4_submission_date TIMESTAMP,
    report_name VARCHAR (100),
    report_complete_or_incomplete VARCHAR (100),
    nc_report BOOLEAN,
    complete_time_in_days NUMERIC(10,2)
    );
    """


# */2 * * * * Execute every two minute 
with DAG(
        dag_id="1wsd19_cleaning",
        schedule_interval="0 15 * * *",
        default_args={
            "owner": "airflow",
            "retries": 1,
            "retry_delay": timedelta(minutes=5),
            "start_date": datetime(2023, 1, 17)
        },
        catchup=False) as f:
    
    getMongoDB = PythonOperator(
        task_id="getMongoDB",
        python_callable=getMongoDB,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    getMongoDB2 = PythonOperator(
        task_id="getMongoDB2",
        python_callable=getMongoDB2,
        op_kwargs={"name": "Dylan"},
        provide_context=True,
    )

    getDrowToken = PythonOperator(
        task_id="getDrowToken",
        python_callable=getDrowToken,
        provide_context=True,
    )

    # create_table = PostgresOperator(
    #     sql = create_table_sql_query,
    #     task_id = "create_table_task",
    #     postgres_conn_id = "postgres_rds",
    # )

# create_table >> getDrowToken >> getMongoDB 
getDrowToken >> getMongoDB >> getMongoDB2