1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488 | try:
from datetime import timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import re
import psycopg2
from sqlalchemy import create_engine
# print("All Dag moudules are sucessfully imported")
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
# return 'DLLM{}'.format(response)
def getMongoDB(**context):
token = context.get("ti").xcom_pull(key="token")
# print('start transform')
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
db = create_engine(conn_string)
conn = db.connect()
# print('db connected')
df = pd.DataFrame()
with conn as conn:
# df_from_sql_nec_records=pd.read_sql("SELECT * FROM public.nec_c04;",
# conn)
df_from_sql_nec_section_of_works = pd.read_sql("SELECT * FROM public.c5_nec_section_of_work;", conn)
# Initialize an empty DataFrame
df = pd.DataFrame()
# Clean and convert the specific columns to float
df['PWDD'] = df_from_sql_nec_section_of_works['Cumulative_PWDD'].str.replace(',', '').str.strip().astype(float)
df['Fcst_Final_PWDD'] = df_from_sql_nec_section_of_works['Forecast_of_the_final_Prices_for_the_Work_Done_to_Date__PWDD'].str.replace(',', '').str.strip().astype(float)
df['PWDD_to_Fcst_Final_PWDD'] = (df['PWDD']/df['Fcst_Final_PWDD'])*100
df['Fcst_Final_Total_Prices'] = df_from_sql_nec_section_of_works['Latest_Forecast_Total_of_the_Prices']
df['Fcst_Final_PWDD_to_Fcst_Final_Total_Prices'] = (df['Fcst_Final_PWDD']/df['Fcst_Final_Total_Prices'])*100
if (df['Fcst_Final_PWDD']/df['Fcst_Final_Total_Prices'])*100 < 100:
df['Scenario'] = 'A'
df['PainGain'] = (df['Fcst_Final_Total_Prices'] - df['Fcst_Final_PWDD'])*0.5
elif (df['Fcst_Final_PWDD']/df['Fcst_Final_Total_Prices'])*100 < 110:
df['Scenario'] = 'B'
df['PainGain'] = (df['Fcst_Final_Total_Prices'] - df['Fcst_Final_PWDD'])*0.5
else:
df['Scenario'] = 'C'
df['PainGain'] = (df['Fcst_Final_PWDD'] - (df['Fcst_Final_PWDD']*1.1)) - df['Fcst_Final_Total_Prices']*0.1*0.5
# df['Forecast_Total_of_the_Prices']=df_from_sql_nec_section_of_works['Latest_Forecast_Total_of_the_Prices']
# df['Forecast_of_the_final_total_of_the_Prices'] = df_from_sql_nec_section_of_works['Forecast_of_the_final_total_of_the_Prices'].str.replace(',', '').str.strip().astype(float)
# Calculate the percentage
df['A1. Ratio of Price for Work Done to Date (PWDD) to forecast final PWDD'] = ((df['Cumulative_PWDD'] / df['Forecast_of_the_final_Prices_for_the_Work_Done_to_Date__PWDD']) * 100).round(2)
df['A2. Ratio of forecast final Price for Work Done to Date (PWDD) to forecast final total of the Prices'] = ((df['Forecast_of_the_final_Prices_for_the_Work_Done_to_Date__PWDD'] / df['Forecast_of_the_final_total_of_the_Prices']) * 100).round(2)
# Load data from SQL into DataFrame
df_from_sql_nec_c5 = pd.read_sql("""SELECT * FROM public.c5_nec_cas
WHERE "Doc_Date" IS NOT NULL
AND "Doc_Date" <= '2024-07-30';""", conn)
# print(df_from_sql_nec_c5)
# Convert 'Revised_Completion_Date' to datetime, errors='coerce' will handle None and invalid dates
df_from_sql_nec_c5['Revised_Completion_Date'] = pd.to_datetime(df_from_sql_nec_c5['Revised_Completion_Date'], errors='coerce')
# Find the latest 'Revised_Completion_Date'
latest_row = df_from_sql_nec_c5.loc[df_from_sql_nec_c5['Revised_Completion_Date'].idxmax()]
# Extract the latest 'Revised_Completion_Date'
latest_date = latest_row['Revised_Completion_Date']
# Assuming df_from_sql_nec_section_of_works is already defined and contains 'starting_date'
df['contract_start_date'] = df_from_sql_nec_section_of_works['starting_date'].dt.tz_localize(None)
# Assign the latest 'Revised_Completion_Date' to 'Longest Section / Key day' in df
df['Longest Section / Key day'] = latest_date
# Calculate today's date
today = pd.to_datetime(datetime.today())
# Calculate the time elapsed from contract start date to today
df['Time Elapsed'] = (today - df['contract_start_date']).dt.days
# Calculate the total contractual duration
df['Contractual Duration'] = (df['Longest Section / Key day'].dt.tz_localize(None) - df['contract_start_date']).dt.days
# Calculate the ratio of time elapsed to contractual duration as a percentage
df['Ratio of Time Elapsed to Contractual Duration'] = ((df['Time Elapsed'] / df['Contractual Duration']) * 100).round(2)
df_json = pd.DataFrame()
# Convert date columns to datetime objects
df_json['Key_Date'] = df_from_sql_nec_c5['Key_Date']
df_json['Revised_Completion_Date'] = pd.to_datetime(df_from_sql_nec_c5['Revised_Completion_Date'])
df_json['Ori_Completion_Date'] = pd.to_datetime(df_from_sql_nec_c5['Ori_Completion_Date'])
# Calculate the latest "Revised_Completion_Date" for each section or key date
latest_revised_completion = df_json.groupby(['Key_Date'])['Revised_Completion_Date'].max().reset_index()
latest_revised_completion.rename(columns={'Revised_Completion_Date': 'Section or Key day Revised_Completion_Date'}, inplace=True)
# Calculate the earliest "Ori_Completion_Date" for each section or key date
earliest_ori_completion = df_json.groupby(['Key_Date'])['Ori_Completion_Date'].min().reset_index()
earliest_ori_completion.rename(columns={'Ori_Completion_Date': 'Section or Key day Ori_Completion_Date'}, inplace=True)
# Merge the latest and earliest dates into a single DataFrame
merged_dates = pd.merge(latest_revised_completion, earliest_ori_completion, on=['Key_Date'])
# Calculate the EOT (Extension Of Time) in days
merged_dates['EOT'] = (merged_dates['Section or Key day Revised_Completion_Date'] - merged_dates['Section or Key day Ori_Completion_Date']).dt.days
merged_dates = merged_dates[merged_dates['Key_Date'].notnull() & (merged_dates['Key_Date'] != '')]
eot_dict = merged_dates.set_index('Key_Date')['EOT'].to_dict()
df['B3. Extension of time of the contract'] = json.dumps(eot_dict)
df_from_sql_PCD = pd.read_sql("SELECT * FROM public.c5_key_date_data;", conn)
merged_PCD = pd.merge(df_from_sql_PCD, latest_revised_completion, left_on='key_Date', right_on='Key_Date', how='inner')
merged_PCD = merged_PCD[['Key_Date', 'Section or Key day Revised_Completion_Date', 'Planned_Completion_Date_PCD']]
merged_PCD['Section or Key day Revised_Completion_Date'] = merged_PCD['Section or Key day Revised_Completion_Date'].dt.strftime('%Y-%m-%d')
merged_PCD['Planned_Completion_Date_PCD'] = pd.to_datetime(merged_PCD['Planned_Completion_Date_PCD']).dt.strftime('%Y-%m-%d')
merged_PCD_json_string = merged_PCD.to_json(orient='records')
df['B4/5. Completion date, planned completion, completion date'] = merged_PCD_json_string
filtered_df_CEW = df_from_sql_nec_c5[
(df_from_sql_nec_c5['NEC_Doc_Type'] == 'EW-') &
(df_from_sql_nec_c5['From'].str.startswith('DCK JV')) &
(df_from_sql_nec_c5['Doc_Ver'] == '0') | (df_from_sql_nec_c5['Doc_Ver'] == 0)
]
# Get the total number of records that meet the conditions
filtered_df_CEW_total_records = len(filtered_df_CEW)
df['C1. Total Number of Early Warnings Initiated by Contractor'] = filtered_df_CEW_total_records
filtered_df_PMEW = df_from_sql_nec_c5[(df_from_sql_nec_c5['NEC_Doc_Type'] == 'EW-') &
(~df_from_sql_nec_c5['From'].str.startswith('DCK JV')) &
(df_from_sql_nec_c5['Doc_Ver'] == '0') | (df_from_sql_nec_c5['Doc_Ver'] == 0)
]
# Get the total number of records that meet the conditions
filtered_df_PMEW_total_records = len(filtered_df_PMEW)
df['C2. Total Number of Early Warnings Initiated by Project Manager'] = filtered_df_PMEW_total_records
df['C3. Total Number of Early Warnings'] = filtered_df_CEW_total_records + filtered_df_PMEW_total_records
filtered_df_Closed_EW = df_from_sql_nec_c5[(df_from_sql_nec_c5['NEC_Doc_Type'] == 'EW-') &
((df_from_sql_nec_c5['Doc_Ver'] == '0')|(df_from_sql_nec_c5['Doc_Ver'] == 0)) &
(df_from_sql_nec_c5['record_status'] == 'Closed')
]
if(filtered_df_CEW_total_records + filtered_df_PMEW_total_records)== 0 :
df['C4. Ratio of Closed Early Warnings to Total Number of Early Warnings'] = 100
else:
df['C4. Ratio of Closed Early Warnings to Total Number of Early Warnings'] = round(((len(filtered_df_Closed_EW) / filtered_df_CEW_total_records + filtered_df_PMEW_total_records)*100),2)
df_from_sql_risk_reg = pd.read_sql("SELECT * FROM public.c5_nec_risk_register;", conn)
# Convert the relevant columns to datetime objects, handling errors
df_from_sql_risk_reg['Date_of_Close_of_EW'] = pd.to_datetime(df_from_sql_risk_reg['Date_of_Close_of_EW'], errors='coerce')
df_from_sql_risk_reg['Date_of_Early_Warning'] = pd.to_datetime(df_from_sql_risk_reg['Date_of_Early_Warning'], errors='coerce')
# Filter out rows where either date is null
filtered_rr_df = df_from_sql_risk_reg.dropna(subset=['Date_of_Close_of_EW', 'Date_of_Early_Warning'])
# Calculate the difference in days between Date_of_Close_of_EW and Date_of_Early_Warning
filtered_rr_df['Duration_Days'] = (filtered_rr_df['Date_of_Close_of_EW'] - filtered_rr_df['Date_of_Early_Warning']).dt.days
# Calculate the average duration
average_duration = filtered_rr_df['Duration_Days'].mean()
df['C5. Average Duration to Resolve Early Warnings'] = average_duration
filtered_df_PMI= df_from_sql_nec_c5[(df_from_sql_nec_c5['NEC_Doc_Type'] == 'PMI-') &
(df_from_sql_nec_c5['Doc_Ver'] == '0') | (df_from_sql_nec_c5['Doc_Ver'] == 0)
]
filtered_df_NCE= df_from_sql_nec_c5[(df_from_sql_nec_c5['NEC_Doc_Type'] == 'NCE-') &
(df_from_sql_nec_c5['Doc_Ver'] == '0') | (df_from_sql_nec_c5['Doc_Ver'] == 0)
]
filtered_df_PMN= df_from_sql_nec_c5[(df_from_sql_nec_c5['NEC_Doc_Type'] == 'PMN-') &
(df_from_sql_nec_c5['Doc_Ver'] == '0') | (df_from_sql_nec_c5['Doc_Ver'] == 0)
]
df['D1. Total Number of Project Manager’s Instructions']=len(filtered_df_PMI)
df['D2. Total Number of Contractor’s Notified Compensation Events (NCE)']=len(filtered_df_NCE)
df['D3. Total Number of Project Manager’s Notified Compensation Events']=len(filtered_df_PMN)
# Initialize a counter for accepted records
accepted_count = 0
# Iterate through each filtered NCE record
for _, row in filtered_df_NCE.iterrows():
nec_event_no = row['NEC_Event_No']
# Check if there's a 'QA-' record with the same NEC_Event_No
if not df_from_sql_nec_c5[(df_from_sql_nec_c5['NEC_Event_No'] == nec_event_no) & (df_from_sql_nec_c5['NEC_Doc_Type'] == 'PMN-')].empty:
accepted_count += 1
df["D3a. Total Number of Contractor’s NCE which PM accepted and instructed for quotation or Total Number of Contractor's NCE with PM’s decision made"] = accepted_count
df["D4. Total Number of Notified Compensation Events"]= len(filtered_df_NCE) + len(filtered_df_PMN)
# Filter records where NEC_Clause starts with '60.1'
filtered_ground_clause_df = df_from_sql_nec_c5[df_from_sql_nec_c5['NEC_Clause'].str.startswith('60.1')]
# Function to extract the classification of ground from NEC_Clause
def extract_classification(nec_clause):
match = re.search(r'60\.1\((\d+)\)', nec_clause)
if match:
# print(int(match.group(1)))
return int(match.group(1))
return None
# Apply the function to the filtered DataFrame
filtered_ground_clause_df['Classification_of_Ground'] = filtered_ground_clause_df['NEC_Clause'].apply(extract_classification)
# Drop rows where classification extraction failed (if any)
filtered_ground_clause_df = filtered_ground_clause_df.dropna(subset=['Classification_of_Ground'])
filtered_ground_clause_df = filtered_ground_clause_df[['Original_Doc_No', 'Classification_of_Ground']]
filtered_ground_clause_df_json = filtered_ground_clause_df.to_json(orient='records')
df['D5. Classification of Grounds for Implemented Compensation Events (NEC Clause 60.1)'] = filtered_ground_clause_df_json
filtered_df_QA= df_from_sql_nec_c5[(df_from_sql_nec_c5['NEC_Doc_Type'] == 'QA-') &
(df_from_sql_nec_c5['Doc_Ver'] == '0') |df_from_sql_nec_c5['Doc_Ver'] == 0
]
if (len(filtered_df_NCE) + len(filtered_df_PMN)) ==0:
df['D6. Ratio of Implemented Compensation Events to Notified Compensation Events']= 0
else:
df['D6. Ratio of Implemented Compensation Events to Notified Compensation Events']= round((len(filtered_df_QA) / (len(filtered_df_NCE) + len(filtered_df_PMN)))*100,2)
# Group by NEC_Event_No and calculate the date difference
def calculate_date_difference(group, ce_doc_type='NCE-', qa_doc_type='QA-'):
nce_date = group.loc[group['NEC_Doc_Type'] == ce_doc_type, 'Doc_Date']
qa_date = group.loc[group['NEC_Doc_Type'] == qa_doc_type, 'Doc_Date']
if not nce_date.empty and not qa_date.empty:
# Calculate the difference in days
date_diff = (qa_date.iloc[0] - nce_date.iloc[0]).days
return pd.Series({
'NEC_Event_No': group['NEC_Event_No'].iloc[0],
'CE_No': group['Original_Doc_No'].iloc[0],
'Date_Difference': date_diff
})
return None
# # Apply the calculation to each group and filter out None results
# NCE_QA_date_diff_df = df_from_sql_nec_c4.groupby('NEC_Event_No').apply(calculate_date_difference).dropna().reset_index(drop=True)
# Apply the calculation to each group using a lambda function to pass parameters
NCE_QA_date_diff_df = df_from_sql_nec_c5.groupby('NEC_Event_No').apply(lambda group: calculate_date_difference(group, 'NCE-', 'QA-')).dropna().reset_index(drop=True)
df['D7. Average duration from Notification to Implementation of Compensation Events']=NCE_QA_date_diff_df['Date_Difference'].mean()
PMN_CQS_date_diff_df = df_from_sql_nec_c5.groupby('NEC_Event_No').apply(lambda group: calculate_date_difference(group, 'PMN-', 'CSQ-')).dropna().reset_index(drop=True)
df['D8. Average duration of Quotation Submission from Contractor']=PMN_CQS_date_diff_df['Date_Difference'].mean()
CSQ_QA_date_diff_df = df_from_sql_nec_c5.groupby('NEC_Event_No').apply(lambda group: calculate_date_difference(group, 'CSQ-', 'QA-')).dropna().reset_index(drop=True)
df['D9. Average duration of Quotation Assessment']=CSQ_QA_date_diff_df['Date_Difference'].mean()
# print(NCE_QA_date_diff_df)
if 'CE_Increase_Decrease' in filtered_df_QA.columns and 'CE_PMI_Amount' in filtered_df_QA.columns:
# Calculate the Cost Implication
def calculate_cost(row):
if row['CE_Increase_Decrease'].lower() == 'increase':
return row['CE_PMI_Amount']
elif row['CE_Increase_Decrease'].lower() == 'decrease':
return -row['CE_PMI_Amount']
return 0
filtered_df_QA['Cost_Implication'] = filtered_df_QA.apply(calculate_cost, axis=1)
total_cost_implication = filtered_df_QA['Cost_Implication'].sum()
filtered_df_QA_non_zero = filtered_df_QA[(filtered_df_QA['CE_PMI_Amount'] != 0)]
df['D10. Cost Implication of Implemented Compensation Event'] = total_cost_implication
df['D10a. Average cost implication of implemented compensation events'] = total_cost_implication / len(filtered_df_QA_non_zero)
filtered_df_QA_Time = filtered_df_QA[['Original_Doc_No', 'Key_Date', 'Revised_Completion_Date', 'Ori_Completion_Date']]
# Drop rows where 'Revised_Completion_Date' or 'Ori_Completion_Date' is empty
filtered_df_QA_Time = filtered_df_QA_Time.dropna(subset=['Revised_Completion_Date', 'Ori_Completion_Date'])
# Convert the date columns to datetime objects
filtered_df_QA_Time['Revised_Completion_Date'] = pd.to_datetime(filtered_df_QA_Time['Revised_Completion_Date']).dt.strftime('%Y-%m-%d')
filtered_df_QA_Time['Ori_Completion_Date'] = pd.to_datetime(filtered_df_QA_Time['Ori_Completion_Date']).dt.strftime('%Y-%m-%d')
df['D11. Time Implication of Implemented Compensation Events'] = filtered_df_QA_Time.to_json(orient='records')
# filtered_df_QA_amount = filtered_df_QA[['Original_Doc_No', 'CE_PMI_Amount', 'CE_Increase_Decrease']]
# ['D10. Cost Implication of Implemented Compensation Event'] = filtered_df_QA_amount.to_json(orient='records')
# filtered_df_QA_non_zero =
# ['D10a. Average cost implication of implemented compensation events'] =
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
# Write the DataFrame back to a SQL table
df.to_sql('nec_c05_icwp_July', con=conn, if_exists='replace', index=False)
# for x in Data:
# try:
# if len(x['data'].keys()) == 0:
# continue
# df_nested_list = json_normalize(x['data'])
# # print('process 1')
# # print(x['data'].keys())
# df2 = df_nested_list.reindex(columns=Mapping.keys())
# df2['record_status'] = x['Status']
# df2['NEC Doc Title']=x['data']['NEC Doc Type']+x['data']['NEC Event No.']
# df2['Doc Org Ver']= x['data']['Doc Ver.']
# y=0
# if x['data']['Doc Ver.'] == None:
# df2['Doc Ver.'] = y
# elif x['data']['Doc Ver.'].startswith('Rev. '):
# y = x['data']['Doc Ver.'].replace('Rev. ', '')
# y = int(y)
# else:
# y = x['data']['Doc Ver.'].replace('-', '').replace('r','')
# if y!='' and not y.isnumeric():
# # print('ver',y)
# y = int(ord(y)) - int(ord('A')) + 1
# # print(y)
# elif y =='':
# y = 0
# else :
# y = int(y)
# df2['Doc Ver.'] = y
# if (not df2['NEC Doc Title'].empty and 'NEC Doc Title' in df.columns):
# # print (y)
# # print('NEC Doc Title' in df.columns)
# check_ver_df = df.loc[(df['NEC Doc Title'] == x['data']['NEC Doc Type']+x['data']['NEC Event No.'])]
# if check_ver_df.empty:
# df2['is_latest'] = 'Yes'
# else :
# check_ver_df2 = check_ver_df.loc[(check_ver_df['Doc Ver.'] > y)]
# if not check_ver_df2.empty:
# df2['is_latest'] = "No"
# else:
# df.loc[(df['NEC Doc Title'] == x['data']['NEC Doc Type']+x['data']['NEC Event No.']) & ( df['Doc Ver.']<y), 'is_latest'] = 'No'
# df2['is_latest'] = 'Yes'
# else:
# df2['is_latest'] = 'Yes'
# df2['NEC Doc Title With Version']=x['data']['NEC Doc Type']+x['data']['NEC Event No.']+'-'+str(y)
# if (x['data'].get('NEC Doc Type') or '').strip().upper() == 'PMN-' and y==0:
# df2['From_Status'] = 'CE notified'
# elif (x['data'].get('NEC Doc Type') or '').strip().upper() == 'CSQ-' and y==0:
# df2['From_Status'] = 'Quotation / Revised quotation submitted by Contractor'
# elif (x['data'].get('NEC Doc Type') or '').strip().upper() == 'QA-' and y==0:
# df2['From_Status'] = 'CE implemented'
# else:
# df2['From_Status'] = None
# if len(x['data']['Change to Time'])>0 and x['data']['NEC Doc Type']!='EW-':
# df4=pd.DataFrame()
# for change_to_time_table in x['data']['Change to Time']:
# df3=df2.copy()
# i = i+1
# if 'Key Date' in change_to_time_table:
# df3['Key Date'] = change_to_time_table['Key Date']
# if 'Extension in days' in change_to_time_table:
# df3['Extension in days'] = change_to_time_table['Extension in days']
# if 'Ori Completion Date' in change_to_time_table:
# df3['Ori Completion Date'] = change_to_time_table['Ori Completion Date']
# if 'Revised Completion Date' in change_to_time_table:
# df3['Revised Completion Date'] = change_to_time_table['Revised Completion Date']
# if i >0:
# df2['From_Status'] = None
# df4 = df4.append(df3)
# i = 0
# df2 = df2.iloc[0:0]
# df2=df2.append(df4)
# # print('process 2')
# # print('loading into DB')
# df = df.append(df2)
# except:
# continue
# # df['is_latest'].fillna('No',inplace=True)
# df.rename(columns=Mapping, inplace=True)
# fields_to_adjust = ['Doc_Date', 'Ori Completion Date', 'Revised Completion Date']
# for field in fields_to_adjust:
# if field in df.columns:
# df[field] = df[field].apply(pd.to_datetime)
# df[field] = df[field] - pd.Timedelta(hours=8)
# # df['Doc_Date']=df['Doc_Date'].apply(pd.to_datetime)
# # df['Doc_Date'] = df['Doc_Date'] - pd.Timedelta(hours=8)
# # df['Ori Completion Date']=df['Ori Completion Date'].apply(pd.to_datetime)
# # df['Ori Completion Date'] = df['Ori Completion Date'] - pd.Timedelta(hours=8)
# # df['Revised Completion Date']=df['Revised Completion Date'].apply(pd.to_datetime)
# # df['Revised Completion Date'] = df['Revised Completion Date'] - pd.Timedelta(hours=8)
# df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
# df.to_sql('nec_c04', con=conn, if_exists='replace', index= False)
# print("success")
# */2 * * * * Execute every two minute
with DAG(
dag_id="1nec_c5_icwps_july",
schedule_interval="0 0,4,8,11,16 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2022, 10, 24)
},
catchup=False) as f:
getDataAndSendToPSQL = PythonOperator(
task_id="getDataAndSendToPSQL",
python_callable=getMongoDB,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
# reformData = PythonOperator(
# task_id="reformData",
# python_callable=reformData,
# provide_context=True,
# # op_kwargs={"name": "Dylan"}
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
getDrowToken >> getDataAndSendToPSQL
|