1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695 | try:
from datetime import timedelta
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.operators.http_operator import SimpleHttpOperator
from datetime import datetime
from pandas.io.json import json_normalize
from airflow.operators.postgres_operator import PostgresOperator
import pandas as pd
import json
import requests
import numpy as np
import re
import calendar
import psycopg2
from sqlalchemy import create_engine, inspect, text
except Exception as e:
print("Error {} ".format(e))
dRoW_api_end_url = "https://drow.cloud"
def getDrowToken(**context):
response = requests.post(
url=f"{dRoW_api_end_url}/api/auth/authenticate",
data={
"username": "icwp2@drow.cloud",
"password": "dGVzdDAxQHRlc3QuY29t"
}
).json()
context["ti"].xcom_push(key="token", value=response['token'])
# return 'DLLM{}'.format(response)
def getMongoDB(**context):
token = context.get("ti").xcom_pull(key="token")
host = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'
# User name of the database server
dbUserName = 'dRowAdmin'
# Password for the database user
dbUserPassword = 'drowsuper'
# Name of the database
database = 'drowDateWareHouse'
# Character set
charSet = "utf8mb4"
port = "5432"
conn_string = ('postgres://' +
dbUserName + ':' +
dbUserPassword +
'@' + host + ':' + port +
'/' + database)
db = create_engine(conn_string)
conn = db.connect()
mappings_risk_reg = {
"Date_of_Closure_of_Early_Warning": "Date_of_Close_of_EW",
"Date_Notified": "Date_of_Early_Warning",
"Notified_by___PM_or_C": "Notified_by",
"Status___Live__Closed": "Status",
}
mappings_nec = {
"Incident_No": "NEC_Event_No",
"CE_No": "CE_No",
"CE_Increase___Decrease": "CE_Increase_Decrease",
}
def update_months(sourcedate, months):
month = sourcedate.month - 1 + months
year = sourcedate.year + month // 12
month = month % 12 + 1
day = min(sourcedate.day, calendar.monthrange(year,month)[1])
return datetime(year, month, day)
with conn as conn:
# Get current date
today = datetime.now()
# Load data from SQL into DataFrame
# Load c1 - p5 data
df_c1 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_c1" WHERE "Doc_Date" IS NOT NULL;', conn)
df_c1['Table'] = 'c1'
df_c1.rename(columns=mappings_nec, inplace=True)
df_c1['Doc_Date'] = df_c1['Doc_Date'].astype(str)
df_c2 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_c2" WHERE "Doc_Date" IS NOT NULL;', conn)
df_c2['Table'] = 'c2'
df_c2.rename(columns=mappings_nec, inplace=True)
df_c2['Doc_Date'] = df_c2['Doc_Date'].astype(str)
df_c3 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_c3" WHERE "Doc_Date" IS NOT NULL;', conn)
df_c3['Table'] = 'c3'
df_c3.rename(columns=mappings_nec, inplace=True)
df_c3['Doc_Date'] = df_c3['Doc_Date'].astype(str)
df_c4 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_c4" WHERE "Doc_Date" IS NOT NULL;', conn)
df_c4['Table'] = 'c4'
df_c4.rename(columns=mappings_nec, inplace=True)
df_c4['Doc_Date'] = df_c4['Doc_Date'].astype(str)
df_p1 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_p1" WHERE "Doc_Date" IS NOT NULL;', conn)
df_p1['Table'] = 'p1'
df_p1.rename(columns=mappings_nec, inplace=True)
df_p1['Doc_Date'] = df_p1['Doc_Date'].astype(str)
df_p2 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_p2" WHERE "Doc_Date" IS NOT NULL;', conn)
df_p2['Table'] = 'p2'
df_p2.rename(columns=mappings_nec, inplace=True)
df_p2['Doc_Date'] = df_p2['Doc_Date'].astype(str)
# Note: uses table _6wsd21 not 6wsd21, need to be updated in future
# df_p3 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_p3" WHERE "Doc_Date" IS NOT NULL;', conn)
df_p3 = pd.DataFrame()
if not df_p3.empty:
df_p3['Table'] = 'p3'
df_p3.rename(columns=mappings_nec, inplace=True)
df_p3 = df_p3[df_p3['CE_No'] != 'null0']
df_p3['Doc_Date'] = df_p3['Doc_Date'].astype(str)
df_p4 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_p4" WHERE "Doc_Date" IS NOT NULL;', conn)
if not df_p4.empty:
df_p4['Table'] = 'p4'
df_p4.rename(columns=mappings_nec, inplace=True)
df_p4['Doc_Date'] = df_p4['Doc_Date'].astype(str)
df_p5 = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_p5" WHERE "Doc_Date" IS NOT NULL;', conn)
if not df_p5.empty:
df_p5['Table'] = 'p5'
df_p5.rename(columns=mappings_nec, inplace=True)
df_p5['Doc_Date'] = df_p5['Doc_Date'].astype(str)
df_all = pd.concat([df_c1, df_c2, df_c3, df_c4, df_p1, df_p2, df_p3], axis=0, ignore_index=True, sort=False)
df_events = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_cr_event";', conn)
# No table for PCD, uncomment when data is in
# df_from_sql_nec_section_of_works = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_section_of_work";', conn)
# df_from_sql_PCD = pd.read_sql('SELECT * FROM public."_6wsd21_nec_key_date_data";', conn)
df_from_sql_nec_section_of_works = pd.DataFrame()
df_from_sql_PCD = pd.DataFrame()
df_from_sql_risk_reg = pd.read_sql('SELECT * FROM public."_6wsd21_edms_nec_risk_register";', conn)
df_from_sql_risk_reg.rename(columns=mappings_risk_reg, inplace=True)
# Get starting date
start_date = df_all.sort_values(by="Doc_Date", ascending=True)["Doc_Date"].iloc[0]
# Result Dataframe
result_df = pd.DataFrame()
for i in range(6):
curr_date = update_months(today, -i)
curr_month_string = curr_date.strftime('%Y%m')
next_date = update_months(curr_date, 1)
next_date_string = next_date.strftime('%Y-%m') + '-01'
# Filter all the respective dates
df_from_sql_nec = df_all[df_all['Doc_Date'] < next_date_string]
# Initialize an empty DataFrame
df = pd.DataFrame()
# A1 - A3
# Clean and convert the specific columns to float
# A1
if not df_from_sql_nec_section_of_works.empty:
pwdd = df_from_sql_nec_section_of_works['Cumulative_PWDD'].str.replace(',', '').str.strip().astype(float)
fcst_final_pwdd = df_from_sql_nec_section_of_works['Forecast_of_the_final_Prices_for_the_Work_Done_to_Date__PWDD'].str.replace(',', '').str.strip().astype(float)
df['A1. PWDD'] = pwdd
df['A1. Fcst_Final_PWDD'] = fcst_final_pwdd.round(2)
df['A1. PWDD_to_Fcst_Final_PWDD'] = ((df['A1. PWDD']/df['A1. Fcst_Final_PWDD'])*100).round(2)
else:
pwdd = 0
fcst_final_pwdd = 0
df['A1. PWDD'] = 0
df['A1. Fcst_Final_PWDD'] = 0
df['A1. PWDD_to_Fcst_Final_PWDD'] = 100
# A2
if not df_from_sql_nec_section_of_works.empty:
df['A2. Fcst_Final_PWDD'] = fcst_final_pwdd.round(2)
fcst_final_total_prices = df_from_sql_nec_section_of_works['Latest_Forecast_Total_of_the_Prices'].str.replace(',', '').str.strip().astype(float)
df['A2. Fcst_Final_Total_Prices'] = fcst_final_total_prices.round(2)
df['A2. Fcst_Final_PWDD_to_Fcst_Final_Total_Prices'] = ((df['A2. Fcst_Final_PWDD']/df['A2. Fcst_Final_Total_Prices'])*100).round(2)
if ((fcst_final_pwdd/fcst_final_total_prices)*100 < 100).bool():
df['A2. Scenario'] = 'A'
df['A2. PainGain'] = (df['A2. Fcst_Final_Total_Prices'] - df['A2. Fcst_Final_PWDD'])*0.5
elif ((fcst_final_pwdd/fcst_final_total_prices)*100 < 110).bool():
df['A2. Scenario'] = 'B'
df['A2. PainGain'] = (df['A2. Fcst_Final_Total_Prices'] - df['A2. Fcst_Final_PWDD'])*0.5
else:
df['A2. Scenario'] = 'C'
df['A2. PainGain'] = ((df['A2. Fcst_Final_PWDD'] - (df['A2. Fcst_Final_PWDD']*1.1)) - df['A2. Fcst_Final_Total_Prices']*0.1*0.5).round(2)
else:
fcst_final_total_prices = 0
df['A2. Fcst_Final_PWDD'] = 0
df['A2. Fcst_Final_Total_Prices'] = 0
df['A2. Fcst_Final_PWDD_to_Fcst_Final_Total_Prices'] = 100
df['A2. Scenario'] = 'A'
df['A2. PainGain'] = 0
# A3
if not df_from_sql_nec_section_of_works.empty:
df['A3. Changed_Total_Price'] = abs(round((fcst_final_pwdd - fcst_final_total_prices), 2))
df['A3. Fcst_Final_Total_Prices'] = round(fcst_final_total_prices, 2)
df['A3. Changed_Total_Price_to_Fcst_Final_Total_Prices'] = abs(round((fcst_final_pwdd - fcst_final_total_prices)/fcst_final_total_prices * 100, 2))
else:
df['A3. Changed_Total_Price'] = 0
df['A3. Fcst_Final_Total_Prices'] = 0
df['A3. Changed_Total_Price_to_Fcst_Final_Total_Prices'] = 0
# B1 - B5
# Convert 'Revised_Completion_Date' to datetime, errors='coerce' will handle None and invalid dates
if 'Ori_Completion_Date' in df_from_sql_nec and df_from_sql_nec['Ori_Completion_Date'].any():
df_from_sql_nec['Ori_Completion_Date'] = pd.to_datetime(df_from_sql_nec['Ori_Completion_Date'], errors='coerce')
else:
df_from_sql_nec['Ori_Completion_Date'] = None
if 'Revised_Completion_Date' in df_from_sql_nec and df_from_sql_nec['Revised_Completion_Date'].any():
df_from_sql_nec['Revised_Completion_Date'] = pd.to_datetime(df_from_sql_nec['Revised_Completion_Date'], errors='coerce')
else:
df_from_sql_nec['Revised_Completion_Date'] = None
# B1
# Find the latest 'Revised_Completion_Date'
if (not df_from_sql_nec['Revised_Completion_Date'].isnull().all()):
latest_row = df_from_sql_nec.loc[df_from_sql_nec['Revised_Completion_Date'].idxmax()]
# Extract the latest 'Revised_Completion_Date'
latest_date = latest_row['Revised_Completion_Date']
else:
latest_date = None
# Assuming df_from_sql_nec_section_of_works is already defined and contains 'starting_date'
if not df_from_sql_nec_section_of_works.empty:
df['contract_start_date'] = df_from_sql_nec_section_of_works['starting_date'].dt.tz_localize(None)
# Calculate today's date
today = pd.to_datetime(datetime.today())
time_elapsed = (today - df['contract_start_date']).dt.days
# Calculate the time elapsed from contract start date to today
df['B1. Time_Elapsed'] = time_elapsed
if (latest_date):
# Assign the latest 'Revised_Completion_Date' to 'Longest Section / Key day' in df
df['Longest Section / Key day'] = latest_date
# Calculate the total contractual duration
df['B1. Contractual_Duration'] = (df['Longest Section / Key day'].dt.tz_localize(None) - df['contract_start_date']).dt.days
# Calculate the ratio of time elapsed to contractual duration as a percentage
df['B1. Time_Elapsed_to_Contractual_Duration'] = ((df['B1. Time_Elapsed'] / df['B1. Contractual_Duration']) * 100).round(2)
else:
df['Longest Section / Key day'] = None
df['B1. Contractual_Duration'] = 0
df['B1. Time_Elapsed_to_Contractual_Duration'] = 0
else:
df['contract_start_date'] = None
df['B1. Time_Elapsed'] = 0
df['Longest Section / Key day'] = None
df['B1. Contractual_Duration'] = 0
df['B1. Time_Elapsed_to_Contractual_Duration'] = 0
# B2
if 'Planned_Completion_Date_PCD' in df_from_sql_PCD.columns:
df_from_sql_PCD['Planned_Completion_Date_PCD'] = pd.to_datetime(df_from_sql_PCD['Planned_Completion_Date_PCD'], errors="coerce")
latest_row = df_from_sql_PCD.loc[df_from_sql_PCD['Planned_Completion_Date_PCD'].idxmax()]
latest_planned_date = latest_row['Planned_Completion_Date_PCD']
df['Latest Planned Date'] = latest_planned_date
# Calculate the time elapsed from contract start date to today
df['B2. Time_Elapsed'] = time_elapsed
# Calculate the total planned duration for completion
df['B2. Planned_Duration'] = (df['Latest Planned Date'].dt.tz_localize(None) - df['contract_start_date']).dt.days
df['B2. Time_Elapsed_to_Planned_Duration'] = ((df['B2. Time_Elapsed'] / df['B2. Planned_Duration']) * 100).round(2)
else:
latest_row = None
latest_planned_date = None
df['B2. Time_Elapsed'] = 0
df['B2. Planned_Duration'] = 0
df['B2. Time_Elapsed_to_Planned_Duration'] = 0
# B3
df_json = pd.DataFrame()
# Convert date columns to datetime objects
if 'key_Date' in df_from_sql_nec.columns and df_from_sql_nec['key_Date'].any() and df_from_sql_nec['Revised_Completion_Date'] and df_from_sql_nec['Ori_Completion_Date']:
df_json['Key_Date'] = df_from_sql_nec['key_Date']
df_json['Revised_Completion_Date'] = pd.to_datetime(df_from_sql_nec['Revised_Completion_Date'])
df_json['Ori_Completion_Date'] = pd.to_datetime(df_from_sql_nec['Ori_Completion_Date'])
# Calculate the latest "Revised_Completion_Date" for each section or key date
latest_revised_completion = df_json.groupby(['Key_Date'])['Revised_Completion_Date'].max().reset_index()
latest_revised_completion.rename(columns={'Revised_Completion_Date': 'Section or Key day Revised_Completion_Date'}, inplace=True)
# Calculate the earliest "Ori_Completion_Date" for each section or key date
earliest_ori_completion = df_json.groupby(['Key_Date'])['Ori_Completion_Date'].min().reset_index()
earliest_ori_completion.rename(columns={'Ori_Completion_Date': 'Section or Key day Ori_Completion_Date'}, inplace=True)
# Merge the latest and earliest dates into a single DataFrame
merged_dates = pd.merge(latest_revised_completion, earliest_ori_completion, on=['Key_Date'])
# Calculate the EOT (Extension Of Time) in days
merged_dates['EOT'] = (merged_dates['Section or Key day Revised_Completion_Date'] - merged_dates['Section or Key day Ori_Completion_Date']).dt.days
merged_dates = merged_dates[merged_dates['Key_Date'].notnull() & (merged_dates['Key_Date'] != '')]
# merged_dates = merged_dates.set_index('Key_Date')
if not merged_dates['Section or Key day Revised_Completion_Date'].isnull().all() and not merged_dates['Section or Key day Revised_Completion_Date'].isnull().all():
latest_row = merged_dates.loc[merged_dates['Section or Key day Revised_Completion_Date'].idxmax()]
# For the longest section, excluding establishment works
df['B3. Extended_Completion_Date'] = latest_row['Section or Key day Revised_Completion_Date'].strftime('%Y%m%d')
df['B3. Original_Completion_Date'] = latest_row['Section or Key day Ori_Completion_Date'].strftime('%Y%m%d')
df['B3. Extension_of_Time_of_Contract'] = latest_row['EOT']
else:
df['B3. Extended_Completion_Date'] = None
df['B3. Original_Completion_Date'] = None
df['B3. Extension_of_Time_of_Contract'] = None
else:
merged_dates = pd.DataFrame()
df['B3. Extended_Completion_Date'] = None
df['B3. Original_Completion_Date'] = None
df['B3. Extension_of_Time_of_Contract'] = None
# B4
def generate_key_date(row):
return {
'ID': row['key_Date'],
'Contract_Date': row['Section or Key day Ori_Completion_Date'],
'Planned_Date': row['Planned_Completion_Date_PCD'],
'Updated_Date': row['Section or Key day Revised_Completion_Date']
}
if 'Key_Date' in merged_dates.columns and 'key_Date' in df_from_sql_PCD.columns:
filtered_merged_dates_key = merged_dates[merged_dates['Key_Date'].str.lower().str.strip().str.startswith('key date')]
merged_PCD = pd.merge(df_from_sql_PCD, filtered_merged_dates_key, left_on='key_Date', right_on='Key_Date', how='inner')
merged_PCD = merged_PCD[['key_Date', 'Section or Key day Revised_Completion_Date', 'Section or Key day Ori_Completion_Date', 'Planned_Completion_Date_PCD']]
merged_PCD['Section or Key day Ori_Completion_Date'] = pd.to_datetime(merged_PCD['Section or Key day Ori_Completion_Date']).dt.strftime('%Y%m%d')
merged_PCD['Section or Key day Revised_Completion_Date'] = pd.to_datetime(merged_PCD['Section or Key day Revised_Completion_Date']).dt.strftime('%Y%m%d')
merged_PCD['Planned_Completion_Date_PCD'] = pd.to_datetime(merged_PCD['Planned_Completion_Date_PCD']).dt.strftime('%Y%m%d')
key_dates_json = merged_PCD.apply(lambda row: generate_key_date(row), axis=1).to_json(orient='records')
df['B4. KEY_DATES'] = '{ "KEY_DATE": ' + key_dates_json + '}'
else:
df['B4. KEY_DATES'] = None
# B5
if 'Key_Date' in merged_dates.columns and 'key_Date' in df_from_sql_PCD.columns:
filtered_merged_dates_section = merged_dates[merged_dates['Key_Date'].str.strip().str.lower().str.startswith('section')]
merged_PCD = pd.merge(df_from_sql_PCD, filtered_merged_dates_section, left_on='key_Date', right_on='Key_Date', how='inner')
merged_PCD = merged_PCD[['key_Date', 'Section or Key day Revised_Completion_Date', 'Section or Key day Ori_Completion_Date', 'Planned_Completion_Date_PCD']]
merged_PCD['Section or Key day Ori_Completion_Date'] = pd.to_datetime(merged_PCD['Section or Key day Ori_Completion_Date']).dt.strftime('%Y%m%d')
merged_PCD['Section or Key day Revised_Completion_Date'] = pd.to_datetime(merged_PCD['Section or Key day Revised_Completion_Date']).dt.strftime('%Y%m%d')
merged_PCD['Planned_Completion_Date_PCD'] = pd.to_datetime(merged_PCD['Planned_Completion_Date_PCD']).dt.strftime('%Y%m%d')
sec_dates_json = merged_PCD.apply(lambda row: generate_key_date(row), axis=1).to_json(orient='records')
df['B5. SEC_DATES'] = '{ "SEC_DATE": ' + sec_dates_json + '}'
else:
df['B5. SEC_DATES'] = None
# Section C1 - C5
# C1
# filtered_df_CEW = df_from_sql_nec[
# (df_from_sql_nec['NEC_Doc_Type'] == 'EW-') &
# (df_from_sql_nec['From'].str.startswith('DCK JV')) &
# (df_from_sql_nec['Doc_Ver'] == '0') | (df_from_sql_nec['Doc_Ver'] == 0)
# ]
filtered_df_EW = df_from_sql_risk_reg[~df_from_sql_risk_reg['Notification_Reference'].isnull() & ~df_from_sql_risk_reg['Date_of_Early_Warning'].isnull()]
# Get the total number of records that meet the conditions
filtered_df_EW_total_records = len(filtered_df_EW)
df['C3. Total_Num_EW'] = filtered_df_EW_total_records
filtered_df_CEWN = filtered_df_EW[filtered_df_EW['Notified_by'].str.upper() == 'C']
filtered_df_PM = filtered_df_EW[filtered_df_EW['Notification_Reference'].str.upper() == 'PM']
df['C1. Total_Num_EW_by_Contractor'] = len(filtered_df_CEWN)
df['C2. Total_Num_EW_by_Project_Manager'] = len(filtered_df_PM)
# C4
# Convert the relevant columns to datetime objects, handling errors
if not df_from_sql_risk_reg['Date_of_Close_of_EW'].isnull().all():
df_from_sql_risk_reg['Date_of_Close_of_EW'] = pd.to_datetime(df_from_sql_risk_reg['Date_of_Close_of_EW'], errors='coerce')
filtered_df_Closed_EW = df_from_sql_risk_reg[df_from_sql_risk_reg['Status'] == 'Closed']
else:
filtered_df_Closed_EW = pd.DataFrame()
df_from_sql_risk_reg['Date_of_Early_Warning'] = pd.to_datetime(df_from_sql_risk_reg['Date_of_Early_Warning'], errors='coerce')
df['C4. Closed_EW'] = len(filtered_df_Closed_EW)
df['C4. Total_EW'] = len(df_from_sql_risk_reg)
if len(df_from_sql_risk_reg) == len(filtered_df_Closed_EW) :
df['C4. Resolved_EW_To_Total_EW'] = 100
else:
df['C4. Resolved_EW_To_Total_EW'] = round(((len(filtered_df_Closed_EW) / len(df_from_sql_risk_reg))*100),2)
# C5
# Filter out rows where either date is null
filtered_rr_df = df_from_sql_risk_reg.dropna(subset=['Date_of_Close_of_EW'])
filtered_rr_df.dropna(subset=['Date_of_Early_Warning'], inplace=True)
if not filtered_rr_df.empty:
# Calculate the difference in days between Date_of_Close_of_EW and Date_of_Early_Warning
filtered_rr_df['Duration_Days'] = (filtered_rr_df['Date_of_Close_of_EW'] - filtered_rr_df['Date_of_Early_Warning']).dt.days
duration_json = filtered_rr_df['Duration_Days'].to_json(orient='records')
df['C5. Durations_All_Closed_EW'] = '{ "Duration": ' + duration_json + '}'
df['C5. Num_closed_EW'] = len(filtered_rr_df)
# Calculate the average duration
average_duration = round(filtered_rr_df['Duration_Days'].mean(),2)
df['C5. Avg_Duration_to_Resolve_EW'] = average_duration
else:
df['C5. Durations_All_Closed_EW'] = None
df['C5. Num_closed_EW'] = 0
df['C5. Avg_Duration_to_Resolve_EW'] = 0
# Filtered dataframe for difference event types
# filtered_df_PMI= df_from_sql_nec[(df_from_sql_nec['NEC_Doc_Type'] == 'PMI-') &
# (df_from_sql_nec['Doc_Ver'] == '0') | (df_from_sql_nec['Doc_Ver'] == 0)
# ]
# filtered_df_NCE= df_from_sql_nec[(df_from_sql_nec['NEC_Doc_Type'] == 'NCE-') &
# (df_from_sql_nec['Doc_Ver'] == '0') | (df_from_sql_nec['Doc_Ver'] == 0)
# ]
# filtered_df_PMN= df_from_sql_nec[(df_from_sql_nec['NEC_Doc_Type'] == 'PMN-') &
# (df_from_sql_nec['Doc_Ver'] == '0') | (df_from_sql_nec['Doc_Ver'] == 0)
# ]
# filtered_df_QA= df_from_sql_nec[((df_from_sql_nec['NEC_Doc_Type'] == 'QA-') &
# (df_from_sql_nec['Doc_Ver'] == '0') | (df_from_sql_nec['Doc_Ver'] == 0)) &
# ~df_from_sql_nec['From_Status'].isnull()
# ]
filtered_df_PMI = df_p2[df_p2['Doc_Date'] < next_date_string]
filtered_df_NCE = df_c2[df_c2['Doc_Date'] < next_date_string]
# filtered_df_PMN = df_p3[df_p3['Doc_Date'] < next_date_string]
filtered_df_QA = df_p4[df_p4['Doc_Date'] < next_date_string]
filtered_df_PMN = pd.DataFrame()
# D1, D2, D3
df['D1. PM_Instruction']=len(filtered_df_PMI)
df['D2. Contractor_NCE']=len(filtered_df_NCE)
df['D3. PM_NCE']=len(filtered_df_PMN)
# D3a
# Initialize a counter for accepted records and non-accepted records
accepted_count = 0
# Iterate through each filtered NCE record
for _, row in filtered_df_NCE.iterrows():
nec_event_no = row['NEC_Event_No']
# Check if there's a 'PMN-' record with the same NEC_Event_No
if not df_from_sql_nec[df_from_sql_nec['NEC_Event_No'] == nec_event_no].empty:
accepted_count += 1
df['D3a. Contractor_NCE_PM_decision'] = len(filtered_df_NCE)
df['D3a. Contractor_NCE_PM_accepted_instructed'] = accepted_count
df['D3a. Ratio'] = round(accepted_count / len(filtered_df_NCE), 3)
# D4
df['D4. Total_NCE']= len(filtered_df_NCE) + len(filtered_df_PMN)
# D5
# Filter records where NEC_Clause starts with '60.1'
filtered_ground_clause_df = df_from_sql_nec[df_from_sql_nec['NEC_Clause'].str.contains('60.1')]
# Function to extract the classification of ground from NEC_Clause
def extract_classification(nec_clause):
match = re.search(r'60\.1\((\d+)\)', nec_clause)
if match:
return int(match.group(1))
return None
def generate_compensation_events(row):
return pd.Series({
'CE_ID': row['CE_No'],
'Ground_ID': row['NEC_Clause'].replace('60.1', '').replace('(', '').replace(')', '')
})
# Apply the function to the filtered DataFrame
filtered_ground_clause_df['Classification_of_Ground'] = filtered_ground_clause_df['NEC_Clause'].apply(extract_classification)
# Drop rows where classification extraction failed (if any)
filtered_ground_clause_df = filtered_ground_clause_df.dropna(subset=['Classification_of_Ground'])
filtered_ground_clause_df_json = filtered_ground_clause_df.apply(lambda row: generate_compensation_events(row), axis=1).to_json(orient='records')
df['D5. Total_CE'] = len(filtered_ground_clause_df)
df['D5. CEs'] = '{ "CE": ' + filtered_ground_clause_df_json + '}'
# D6
df['D6. Num_Implemented_Events'] = len(filtered_df_QA)
df['D6. Num_Notified_Events'] = len(filtered_df_PMN)
if len(filtered_df_QA) == len(filtered_df_PMN):
df['D6. Ratio']= 100
elif len(filtered_df_PMN):
df['D6. Ratio']= round((len(filtered_df_QA) / (len(filtered_df_PMN)))*100,2)
else:
df['D6. Ratio']= 0
def calculate_date_difference(group, table_name_1, table_name_2, table_key_1, table_key_2):
date_1 = group.loc[group['Table'] == table_name_1, 'Doc_Date']
date_2 = group.loc[group['Table'] == table_name_2, 'Doc_Date']
if not date_1.empty and not date_2.empty:
index_1 = len(date_1)-1
index_2 = len(date_2)-1
# Calculate the difference in days
date_diff = (date_2.iloc[index_2] - date_1.iloc[index_1]).days
return pd.Series({
'NEC_Event_No': group['NEC_Event_No'].iloc[0],
'CE_No': group['CE_No'].iloc[0],
table_key_1: date_1.iloc[index_1].strftime('%Y%m%d'),
table_key_2: date_2.iloc[index_2].strftime('%Y%m%d'),
'Duration': date_diff,
})
return None
# D7
# Group by NEC_Event_No and calculate the date difference
# def calculate_date_difference(group, pmn_table_name='p3', ie_table_name='p4'):
# pmn_date = group.loc[group['Table'] == pmn_table_name, 'Doc_Date']
# ie_date = group.loc[group['Table'] == ie_table_name, 'Doc_Date']
# if not pmn_date.empty and not qa_date.empty:
# pmn_index = len(pmn_date)-1
# ie_index = len(ie_date)-1
# # Calculate the difference in days
# date_diff = (ie_date.iloc[ie_index] - pmn_date.iloc[pmn_index]).days
# return pd.Series({
# 'NEC_Event_No': group['NEC_Event_No'].iloc[0],
# 'CE_No': group['CE_No'].iloc[0],
# 'Date_Notification': pmn_date.iloc[pmn_index].strftime('%Y%m%d'),
# 'Date_Implementation': ie_date.iloc[ie_index].strftime('%Y%m%d'),
# 'Duration': date_diff
# })
# return None
# Apply the calculation to each group and filter out None results
# Apply the calculation to each group using a lambda function to pass parameters
NCE_QA_date_diff_df = df_from_sql_nec.groupby('NEC_Event_No').apply(lambda group: calculate_date_difference(group, 'p3', 'p4', 'Date_Notification', 'Date_Implementation')).dropna().reset_index(drop=True)
if not NCE_QA_date_diff_df.empty:
implemented_ces = NCE_QA_date_diff_df[['Date_Notification', 'Date_Implementation', 'Duration']].to_json(orient='records')
df['D7. Implemented_CEs'] = '{ "Implemented_CE": ' + implemented_ces + '}'
df['D7. Num_implemented'] = len(NCE_QA_date_diff_df)
df['D7. Average_duration']= round(NCE_QA_date_diff_df['Duration'].mean(), 2)
else:
df['D7. Implemented_CEs'] = None
df['D7. Num_implemented'] = 0
df['D7. Average_duration']= 0
# D8
# def calculate_date_difference(group, pmn_table_name='p3', csq_doc_type='p4'):
# pmn_date = group.loc[group['NEC_Doc_Type'] == pmn_doc_type, 'Doc_Date']
# csq_date = group.loc[group['NEC_Doc_Type'] == csq_doc_type, 'Doc_Date']
# if not pmn_date.empty and not csq_date.empty:
# pmn_index = len(pmn_date)-1
# csq_index = len(csq_date)-1
# # Calculate the difference in days
# date_diff = (csq_date.iloc[csq_index] - pmn_date.iloc[pmn_index]).days
# return pd.Series({
# 'NEC_Event_No': group['NEC_Event_No'].iloc[0],
# 'CE_No': group['CE_No'].iloc[0],
# 'Date_Quotation_Req': pmn_date.iloc[pmn_index].strftime('%Y%m%d'),
# 'Date_Quotation_Sub': csq_date.iloc[csq_index].strftime('%Y%m%d'),
# 'Duration': date_diff
# })
# return None
PMN_CQS_date_diff_df = df_from_sql_nec.groupby('NEC_Event_No').apply(lambda group: calculate_date_difference(group, 'p3', 'p4', 'Date_Quotation_Req', 'Date_Quotation_Sub')).dropna().reset_index(drop=True)
if not PMN_CQS_date_diff_df.empty:
quotation_subs = PMN_CQS_date_diff_df[['Date_Quotation_Req', 'Date_Quotation_Sub', 'Duration']].to_json(orient="records")
df['D8. Quotation_Subs'] = '{ "Quotation_Sub": ' + quotation_subs + '}'
df['D8. Num_quotation'] = len(PMN_CQS_date_diff_df)
df['D8. Average_duration'] = round(PMN_CQS_date_diff_df['Duration'].mean(), 2)
else:
df['D8. Quotation_Subs'] = None
df['D8. Num_quotation'] = 0
df['D8. Average_duration'] = 0
# D9
# def calculate_date_difference(group, csq_doc_type='CSQ-', qa_doc_type='QA-'):
# csq_date = group.loc[group['NEC_Doc_Type'] == csq_doc_type, 'Doc_Date']
# qa_date = group.loc[group['NEC_Doc_Type'] == qa_doc_type, 'Doc_Date']
# if not csq_date.empty and not qa_date.empty:
# qa_index = len(qa_date)-1
# csq_index = len(csq_date)-1
# # Calculate the difference in days
# date_diff = (qa_date.iloc[qa_index] - csq_date.iloc[csq_index]).days
# return pd.Series({
# 'NEC_Event_No': group['NEC_Event_No'].iloc[0],
# 'CE_No': group['CE_No'].iloc[0],
# 'Date_Quotation_Submission': csq_date.iloc[csq_index].strftime('%Y%m%d'),
# 'Date_PM_Reponse': qa_date.iloc[qa_index].strftime('%Y%m%d'),
# 'Duration': date_diff
# })
# return None
CSQ_QA_date_diff_df = df_from_sql_nec.groupby('NEC_Event_No').apply(lambda group: calculate_date_difference(group, 'c3', 'p4', 'Date_Quotation_Submission', 'Date_PM_Reponse')).dropna().reset_index(drop=True)
if not CSQ_QA_date_diff_df.empty:
quotation_assessments = CSQ_QA_date_diff_df[['Date_Quotation_Submission', 'Date_PM_Reponse', 'Duration']].to_json(orient='records')
df['D9. Quotation_Assessments'] = '{ "Quotation_Assessment": ' + quotation_assessments + '}'
df['D9. Num_PM_Response'] = len(CSQ_QA_date_diff_df)
df['D9. Average_duration'] = round(CSQ_QA_date_diff_df['Duration'].mean(), 2)
else:
df['D9. Quotation_Assessments'] = None
df['D9. Num_PM_Response'] = 0
df['D9. Average_duration'] = 0
# D10 - D11
# Calculate the Cost Implication
def calculate_cost(row):
if row['CE_Increase_Decrease'].lower() == 'increase':
return row['CE_Amount']
elif row['CE_Increase_Decrease'].lower() == 'decrease':
return -row['CE_Amount']
else:
return 0
def generate_implemented_compensations(row):
if 'Extension_in_days' not in row:
return pd.Series({
'Cost_Implication': round(row['Cost_Implication'], 2),
'Time_Implication': 0
})
return pd.Series({
'Cost_Implication': round(row['Cost_Implication'], 2),
'Time_Implication': row['Extension_in_days']
})
if 'CE_Amount' in filtered_df_QA.columns or 'Change_to_Time' in filtered_df_QA.columns:
# Drop rows where CE_PMI_Amount or Extension_in_days is empty
filtered_pmi_amount = filtered_df_QA.dropna(subset=['CE_Amount'])
if not filtered_pmi_amount.empty:
filtered_pmi_amount['Cost_Implication'] = filtered_pmi_amount.apply(calculate_cost, axis=1)
df_groupby_ori_doc_no = filtered_pmi_amount.groupby(['CE_No']).sum()
implemented_compensations = df_groupby_ori_doc_no.apply(lambda row: generate_implemented_compensations(row), axis=1).dropna().reset_index(drop=True)
implemented_compensations_json = implemented_compensations.to_json(orient='records')
df['D10. Implemented_Compensations'] = '{ "Implemented_Compensation": ' + implemented_compensations_json + '}'
total_cost_implication = filtered_pmi_amount['Cost_Implication'].sum()
df['D10. Sum_Cost_Implication'] = round(total_cost_implication, 2)
df['D10a. Avg_Cost_Implication'] = round((total_cost_implication / len(filtered_pmi_amount)), 2)
df['D11. Time_Cost_Implication'] = 0
else:
df['D10. Implemented_Compensations'] = None
df['D10. Sum_Cost_Implication'] = 0
df['D10a. Avg_Cost_Implication'] = 0
df['D11. Time_Cost_Implication'] = 0
else:
df['D10. Implemented_Compensations'] = None
df['D10. Sum_Cost_Implication'] = 0
df['D10a. Avg_Cost_Implication'] = 0
df['D11. Time_Cost_Implication'] = 0
# Include starting date
df['start_date'] = start_date
# Include the year month
df['year_month'] = curr_month_string
print('DataFrame:', df)
df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
result_df = result_df.append(df)
# Write the DataFrame back to a SQL table
result_df.to_sql('nec_6wsd21_icwps', con=conn, if_exists='replace', index=False)
# */2 * * * * Execute every two minute
with DAG(
dag_id="1nec_6wsd21_icwps",
schedule_interval="0 1,5,9,12,17 * * *",
default_args={
"owner": "airflow",
"retries": 1,
"retry_delay": timedelta(minutes=5),
"start_date": datetime(2022, 10, 24)
},
catchup=False) as f:
getDataAndSendToPSQL = PythonOperator(
task_id="getDataAndSendToPSQL",
python_callable=getMongoDB,
op_kwargs={"name": "Dylan"},
provide_context=True,
)
# reformData = PythonOperator(
# task_id="reformData",
# python_callable=reformData,
# provide_context=True,
# # op_kwargs={"name": "Dylan"}
# )
getDrowToken = PythonOperator(
task_id="getDrowToken",
python_callable=getDrowToken,
provide_context=True,
# op_kwargs={"name": "Dylan"}
)
getDrowToken >> getDataAndSendToPSQL
|