DAG: nec_c4

schedule: 0 0,4,8,11,16 * * *


Task Instance: getDataAndSendToPSQL


Task Instance Details

Dependencies Blocking Task From Getting Scheduled
Dependency Reason
Dagrun Running Task instance's dagrun was not in the 'running' state but in the state 'success'.
Task Instance State Task is in the 'success' state which is not a valid state for execution. The task must be cleared in order to be run.
Attribute: python_callable
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/61e27b64b3e8d9753110ee97?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    # print('got_data')
    # print(response)
    Data = json.loads(response.text)
    Mapping= {
            "Original Doc No.": "Original_Doc_No",
            "NEC Doc Type": "NEC_Doc_Type",
            "NEC Event No.": "NEC_Event_No",
            "Doc Ver.": "Doc_Ver",
            "Doc Date": "Doc_Date",
            "Subject": "Subject",
            "From": "From",
            "To": "To",
            "CE Amount": "CE_PMI_Amount",
            "CE Increase / Decrease": "CE_Increase_Decrease",
            "Quotation Status": "Quotation_Status",
            "NEC Clause": "NEC_Clause",
            "Receive Date": "Receive_Date"
    }
    # print('start transform')
    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  

        # User name of the database server
    dbUserName            = 'dRowAdmin'  

    # Password for the database user
    dbUserPassword        = 'drowsuper'  

    # Name of the database 
    database              = 'drowDateWareHouse'

    # Character set
    charSet               = "utf8mb4"  

    port                  = "5432"

    # #cursor Type
    # cusrsorType            = pymysql.cursors.DictCursor



    #create_engine('mysql+mysqldb://root:password@localhost:3306/mydbname', echo = False)
    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)

    # df = context.get("ti").xcom_pull(key="InsertData")
    # print(df)
    # conn_string = 'postgres://user:password@host/data1'
    
    db = create_engine(conn_string)
    conn = db.connect()
    # print('db connected')
    df = pd.DataFrame()
    i=0
    with conn as conn:
        for x in Data:
            try:
                if len(x['data'].keys()) == 0:
                    continue
                df_nested_list = json_normalize(x['data'])
                # print('process 1')
                # print(x['data'].keys())
                df2 = df_nested_list.reindex(columns=Mapping.keys())
                df2['record_status'] = x['Status']
                df2['NEC Doc Title']=x['data']['NEC Doc Type']+x['data']['NEC Event No.']
                df2['Doc Org Ver']= x['data']['Doc Ver.']
                if x['data']['Receive Date']=='' or x['data']['Receive Date']==None:
                    # print('Doc Title:', df2['NEC Doc Title'])
                    # print('Data:', x['data'])
                    df2['withReceiveDate'] = False
                else:
                    df2['withReceiveDate'] = True
                if x['data']['Receive Date']=='' or x['data']['Receive Date']==None:
                    df2['Receive Date']=x['data']['Doc Date']
                
                y=0
                if x['data']['Doc Ver.'] == None:
                    df2['Doc Ver.'] = y
                elif x['data']['Doc Ver.'].startswith('Rev. '):
                    y = x['data']['Doc Ver.'].replace('Rev. ', '')
                    y = int(y)
                else:
                    y = x['data']['Doc Ver.'].replace('-', '').replace('r','')
                    if y!='' and not y.isnumeric():
                        # print('ver',y)
                        y = int(ord(y)) - int(ord('A')) + 1
                        # print(y)
                    elif y =='':
                        y = 0
                    else :
                        y = int(y)
                    df2['Doc Ver.'] = y
                if (not df2['NEC Doc Title'].empty and 'NEC Doc Title' in df.columns):
                    # print (y)
                    # print('NEC Doc Title' in df.columns)
                    check_ver_df = df.loc[(df['NEC Doc Title'] == x['data']['NEC Doc Type']+x['data']['NEC Event No.'])]
                    if check_ver_df.empty:
                        df2['is_latest'] = 'Yes'
                    else :
                        check_ver_df2 = check_ver_df.loc[(check_ver_df['Doc Ver.'] > y)]
                        if not check_ver_df2.empty:
                            df2['is_latest'] = "No"
                        else:
                            df.loc[(df['NEC Doc Title'] == x['data']['NEC Doc Type']+x['data']['NEC Event No.']) & ( df['Doc Ver.']<y), 'is_latest'] = 'No'
                            df2['is_latest'] = 'Yes'
                else:
                    df2['is_latest'] = 'Yes'
                df2['NEC Doc Title With Version']=x['data']['NEC Doc Type']+x['data']['NEC Event No.']+'-'+str(y)
                
                if (x['data'].get('NEC Doc Type') or '').strip().upper() == 'PMN-' and y==0 and (x['Status'] == 'Receipt by Contractor' or x['Status'] == 'Closed'):
                    df2['From_Status'] = '1. CE notified'
                elif (x['data'].get('NEC Doc Type') or '').strip().upper() == 'CSQ-' and y==0:
                    df2['From_Status'] = '2. Quotation Submitted'
                elif (x['data'].get('NEC Doc Type') or '').strip().upper() == 'QA-' and y==0 and (x['Status'] == 'Receipt by Contractor' or x['Status'] == 'Closed'): # Add current status = Receipt by Contractor 
                    df2['From_Status'] = '3. CE implemented'
                else:
                    df2['From_Status'] = None

                if len(x['data']['Change to Time'])>0 and x['data']['NEC Doc Type']!='EW-':
                    df4=pd.DataFrame()
                    for change_to_time_table in x['data']['Change to Time']:
                        df3=df2.copy()
                        i = i+1
                        if 'Key Date' in change_to_time_table:
                            df3['Key Date'] = change_to_time_table['Key Date']
                        if 'Extension in days' in change_to_time_table:
                            df3['Extension in days'] = change_to_time_table['Extension in days']
                        if 'Ori Completion Date' in change_to_time_table:
                            df3['Ori Completion Date'] = change_to_time_table['Ori Completion Date']
                        if 'Revised Completion Date' in change_to_time_table:
                            df3['Revised Completion Date'] = change_to_time_table['Revised Completion Date']
                        if i >0:
                            df2['From_Status'] = None
                        df4 = df4.append(df3)
                    i = 0
                    df2 = df2.iloc[0:0]
                    df2=df2.append(df4)
                    # print('process 2')
                    # print('loading into DB')
                df = df.append(df2)
            except:
                continue
        # df['is_latest'].fillna('No',inplace=True)
        df.rename(columns=Mapping, inplace=True)
        fields_to_adjust = ['Doc_Date', 'Ori Completion Date', 'Revised Completion Date', 'Receive_Date']

        for field in fields_to_adjust:
            if field in df.columns:
                df[field] = df[field].apply(pd.to_datetime)
                df[field] = df[field] - pd.Timedelta(hours=8)
        # df['Doc_Date']=df['Doc_Date'].apply(pd.to_datetime)
        # df['Doc_Date'] = df['Doc_Date'] - pd.Timedelta(hours=8)
        # df['Ori Completion Date']=df['Ori Completion Date'].apply(pd.to_datetime)
        # df['Ori Completion Date'] = df['Ori Completion Date'] - pd.Timedelta(hours=8)
        # df['Revised Completion Date']=df['Revised Completion Date'].apply(pd.to_datetime)
        # df['Revised Completion Date'] = df['Revised Completion Date'] - pd.Timedelta(hours=8)
        df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
        
        # Received_Date need +800
        def handle_quotation_status(row, df):
            if row['Quotation_Status'] == 'Quotation to be submitted':
                # Filter the DataFrame for the same event and specific document type
                same_event_df = df[(df['NEC_Event_No'] == row['NEC_Event_No']) & (df['NEC_Doc_Type'] == 'CSQ-')]

                # Check if the DataFrame is not empty
                if not same_event_df.empty:
                    # Get the latest document
                    latest_pmn = same_event_df.sort_values(by='Receive_Date', ascending=False).iloc[0] 
                    # Calculate the difference in months
                    months_diff = (row['Receive_Date'] - latest_pmn['Receive_Date']).days / 30
                    if months_diff > 24:
                        return 'Quotation to be submitted > 24 months'
                    else:
                        return 'Quotation to be submitted < 24 months'
                else:
                    # No CSQ records found, calculate the difference from today
                    latest_receive_date = row['Receive_Date']
                    today = pd.Timestamp.today().tz_localize(None).normalize()  # Make today timezone-naive
                    latest_receive_date = latest_receive_date.tz_localize(None).normalize()  # Make latest_receive_date timezone-naive
                    months_diff = (today - latest_receive_date).days / 30
                    if months_diff > 24:
                        return 'Quotation to be submitted > 24 months'
                    else:
                        return 'Quotation to be submitted < 24 months'

            elif row['Quotation_Status'] == 'Quotation to be assessed':
                # Filter the DataFrame for the same event and specific document type
                same_event_df = df[(df['NEC_Event_No'] == row['NEC_Event_No']) & (df['NEC_Doc_Type'] == 'QA-')]

                # Check if the DataFrame is not empty
                if not same_event_df.empty:
                    # Get the latest document
                    latest_pmn = same_event_df.sort_values(by='Receive_Date', ascending=False).iloc[0]
                    # Calculate the difference in months
                    months_diff = (row['Receive_Date'] - latest_pmn['Receive_Date']).days / 30
                    if months_diff > 24:
                        return 'Quotation to be assessed > 24 months'
                    else:
                        return 'Quotation to be assessed < 24 months'
                else:
                    latest_receive_date = row['Receive_Date']
                    today = pd.Timestamp.today().tz_localize(None).normalize()  # Make today timezone-naive
                    latest_receive_date = latest_receive_date.tz_localize(None).normalize()  # Make latest_receive_date timezone-naive
                    months_diff = (today - latest_receive_date).days / 30
                    if months_diff > 24:
                        return 'Quotation to be assessed > 24 months'
                    else:
                        return 'Quotation to be assessed < 24 months'
            else:
                return row['Quotation_Status']
        
        df['Quotation_Status'] = df.apply(lambda row: handle_quotation_status(row, df), axis=1)
        df['Receive_Date'] = df['Receive_Date'].apply(pd.to_datetime) + pd.Timedelta(hours=8)

        def handle_ce_status(row, df):
            same_event_df = df[df['NEC_Event_No'] == row['NEC_Event_No']]
            doc_types = same_event_df['NEC_Doc_Type'].unique()
            same_event_df.sort_values(by='Receive_Date', axis=0, ascending=False, inplace=True)
            today = pd.Timestamp.today().tz_localize(None).normalize()

            if 'QA-' in doc_types:
                latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'QA-'].iloc[0]
                if row['NEC_Doc_Type'] == 'QA-' and row['Receive_Date'] == latest_row['Receive_Date']:
                    return 'CE implemented'

            elif 'CSQ-' in doc_types:
                latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'CSQ-'].iloc[0]
                if row['NEC_Doc_Type'] == 'CSQ-' and row['Receive_Date'] == latest_row['Receive_Date']:
                    latest_receive_date = row['Receive_Date'].tz_localize(None).normalize()
                    months_diff = (today - latest_receive_date).days / 30
                    if months_diff > 24:
                        return 'Quotation to be assessed > 24 months'
                    else:
                        return 'Quotation to be assessed < 24 months'

            elif 'PMIQ-' in doc_types:
                latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMIQ-'].iloc[0]
                if row['NEC_Doc_Type'] == 'PMIQ-' and row['Receive_Date'] == latest_row['Receive_Date']:
                    # Calculate the difference in months
                    latest_receive_date = row['Receive_Date'].tz_localize(None).normalize()
                    months_diff = (today - latest_receive_date).days / 30
                    if months_diff > 24:
                        return 'Quotation to be submitted > 24 months'
                    else:
                        return 'Quotation to be submitted < 24 months'

            elif 'PMN-' in doc_types:
                latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMN-'].iloc[0]
                if row['NEC_Doc_Type'] == 'PMN-':
                    return 'CE to be notified'
            
            elif 'PMI-' in doc_types:
                latest_row = same_event_df[same_event_df['NEC_Doc_Type'] == 'PMI-'].iloc[0]
                if row['NEC_Doc_Type'] == 'PMI-':             
                    return 'CE to be notified'
            
            return ''
        
        df['CE_Status'] = df.apply(lambda row: handle_ce_status(row, df), axis=1)
        df['Receive_Date'] = df['Receive_Date'].apply(pd.to_datetime) + pd.Timedelta(hours=8)

        df.to_sql('nec_c04', con=conn, if_exists='replace', index= False)
Task Instance Attributes
Attribute Value
dag_id nec_c4
duration 625.636662
end_date 2025-04-26 11:12:25.044095+00:00
execution_date 2025-04-26T08:00:00+00:00
executor_config {}
generate_command <function TaskInstance.generate_command at 0x7f152f9bf320>
hostname 63fbafbc3109
is_premature False
job_id 142741
key ('nec_c4', 'getDataAndSendToPSQL', <Pendulum [2025-04-26T08:00:00+00:00]>, 2)
log <Logger airflow.task (INFO)>
log_filepath /usr/local/airflow/logs/nec_c4/getDataAndSendToPSQL/2025-04-26T08:00:00+00:00.log
log_url http://localhost:8080/admin/airflow/log?execution_date=2025-04-26T08%3A00%3A00%2B00%3A00&task_id=getDataAndSendToPSQL&dag_id=nec_c4
logger <Logger airflow.task (INFO)>
mark_success_url http://localhost:8080/success?task_id=getDataAndSendToPSQL&dag_id=nec_c4&execution_date=2025-04-26T08%3A00%3A00%2B00%3A00&upstream=false&downstream=false
max_tries 1
metadata MetaData(bind=None)
next_try_number 2
operator PythonOperator
pid 2953533
pool default_pool
prev_attempted_tries 1
previous_execution_date_success 2025-04-26 04:00:00+00:00
previous_start_date_success 2025-04-26 08:01:53.263597+00:00
previous_ti <TaskInstance: nec_c4.getDataAndSendToPSQL 2025-04-26 04:00:00+00:00 [success]>
previous_ti_success <TaskInstance: nec_c4.getDataAndSendToPSQL 2025-04-26 04:00:00+00:00 [success]>
priority_weight 1
queue default
queued_dttm 2025-04-26 11:01:56.165418+00:00
raw False
run_as_user None
start_date 2025-04-26 11:01:59.407433+00:00
state success
task <Task(PythonOperator): getDataAndSendToPSQL>
task_id getDataAndSendToPSQL
test_mode False
try_number 2
unixname airflow
Task Attributes
Attribute Value
dag <DAG: nec_c4>
dag_id nec_c4
depends_on_past False
deps {<TIDep(Not In Retry Period)>, <TIDep(Trigger Rule)>, <TIDep(Previous Dagrun State)>}
do_xcom_push True
downstream_list []
downstream_task_ids set()
email None
email_on_failure True
email_on_retry True
end_date None
execution_timeout None
executor_config {}
extra_links []
global_operator_extra_link_dict {}
inlets []
lineage_data None
log <Logger airflow.task.operators (INFO)>
logger <Logger airflow.task.operators (INFO)>
max_retry_delay None
on_failure_callback None
on_retry_callback None
on_success_callback None
op_args []
op_kwargs {'name': 'Dylan'}
operator_extra_link_dict {}
operator_extra_links ()
outlets []
owner airflow
params {}
pool default_pool
priority_weight 1
priority_weight_total 1
provide_context True
queue default
resources None
retries 1
retry_delay 0:05:00
retry_exponential_backoff False
run_as_user None
schedule_interval 0 0,4,8,11,16 * * *
shallow_copy_attrs ('python_callable', 'op_kwargs')
sla None
start_date 2022-10-24T00:00:00+00:00
subdag None
task_concurrency None
task_id getDataAndSendToPSQL
task_type PythonOperator
template_ext []
template_fields ('templates_dict', 'op_args', 'op_kwargs')
templates_dict None
trigger_rule all_success
ui_color #ffefeb
ui_fgcolor #000
upstream_list [<Task(PythonOperator): getDrowToken>]
upstream_task_ids {'getDrowToken'}
wait_for_downstream False
weight_rule downstream