DAG: dc202312_safety_walk

schedule: 0 15 * * *


Task Instance: getMongoDB


Task Instance Details

Dependencies Blocking Task From Getting Scheduled
Dependency Reason
Dagrun Running Task instance's dagrun was not in the 'running' state but in the state 'failed'.
Dag Not Paused Task's DAG 'dc202312_safety_walk' is paused.
Task Instance State Task is in the 'failed' state which is not a valid state for execution. The task must be cleared in order to be run.
Attribute: python_callable
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/6541f7d28674275009aba7ff?export_type=0",
    headers={
        "x-access-token": f"Bearer {token}",
        "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    })

    RISC_Data = json.loads(response.text)
    Mapping= {
    # "Sup Rep Signed Date" : "sup_rep_signed_date", 
    # "contractor_rep_signed_date" : "contractor_rep_signed_date",
    "Date of Inspection" : "date_of_inspection",
    # "A1. No. of Walk": "a1_no_of_walk",
    # "1. General_compelete": "general_complete",
    # "1. General_incompelete": "general_incomplete",
    # "2. Flammable Liquids / Gases_compelete": "flammable_liquids_gases_complete",
    # "2. Flammable Liquids / Gases_incompelete": "flammable_liquids_gases_incomplete",
    # "3. Hazardous Substances_compelete": "general_complete",
    # "3. Hazardous Substances_incompelete": "general_incomplete",
    }
    saftey_cats={
	"General 一般事項",
	"Flammable Liquids / Gases 易燃液體/氣體",
	"Hazardous Substances 有害物品",
	"Electricity電力",
	"Fire Precaution 防火",
	"Working Area 工作地方",
	"7. Lifting Operation",
	"8. Material Hoist",
	"9. Confined Spaces",
	"10. Noise",
	"11. Gas Welding and Cutting Equipment",
	"12. Electricity‐arc Welding",
	"13. Mechanical Plant and Equipment",
	"14. Tunnel",
	"15. Formwork",
	"16. Hoarding",
	"17. Working at Height",
	"18. Abrasive Wheels",
	"19. Excavations",
	"20. Slings and other Lifting Gears",
	"21. Compressed Air/ Pneumatic Air Tools",
	"22. Protection of the Public",
	"23. Prevention of Mosquito Breed",
	"24. Work Over Water",
	"25. Welfare Facilities",
	# "26. Others / Remarks"
    }

    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  
    dbUserName            = 'dRowAdmin'  
    dbUserPassword        = 'drowsuper'  
    database              = 'drowDateWareHouse'
    charSet               = "utf8mb4"  
    port                  = "5432"


    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    
    db = create_engine(conn_string)
    conn = db.connect()
    non_compliant_df = pd.DataFrame()

    with conn:
        for x in RISC_Data:
            # Normalize the nested JSON data into a flat DataFrame
            df_nested_list = json_normalize(x['data'])
            # Find columns that contain 'Safety Compliance'
            safety_compliance_cols = [col for col in df_nested_list.columns if 'Safety Compliance' in col]

            # Filter the DataFrame for rows where any 'Safety Compliance' is 'No'
            condition = pd.concat([df_nested_list[col] == 'No' for col in safety_compliance_cols], axis=1).any(axis=1)
            filtered_df = df_nested_list[condition]

            # Drop the 'Safety Compliance' columns from the filtered DataFrame
            filtered_df = filtered_df.drop(safety_compliance_cols, axis=1)

            # Append the non-compliant records to the non_compliant_df DataFrame
            non_compliant_df = pd.concat([non_compliant_df, filtered_df], ignore_index=True)
            print(non_compliant_df)

        # At this point, non_compliant_df contains all rows from the normalized data where 'Safety Compliance' was 'No'
        # without the 'Safety Compliance' columns themselves

        #     df2 = df_nested_list.reindex(columns=Mapping.keys())
        #     if len(x['ApproveLogSummary']) > 0:
        #         # request_date = pd.to_datetime(df2["C1 - Inspect on Date Time"]) - pd.Timedelta(days=1)
        #         request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : RSS Check/Agree Report"]
        #         if len(request_data) > 0 and 'from' in request_data[-1]:
        #             df2['sup_rep_signed_date'] = request_data[len(request_data)-1]['from']
        #         else:
        #             df2['sup_rep_signed_date'] = None
        #         if len(request_data) > 0 and 'to' in request_data[-1]:
        #             df2['contractor_rep_signed_date'] = request_data[len(request_data)-1]['to']
        #         else:
        #             df2['contractor_rep_signed_date'] = None
        #     else:
        #         df2['sup_rep_signed_date'] = None
        #         df2['contractor_rep_signed_date'] = None
        #     if x['data']['A1. No. of Walk'] != None :
        #         df2["report_name"] = x['data']['A1. No. of Walk']
        #     else :
        #         df2["report_name"] = None
        #     if (len(x['data']['C Summary of Follow-up Actions']) > 0):
        #         total_late_retification = 0
        #         for summaryData in x['data']['C Summary of Follow-up Actions']:
        #             if ("B3 Agreed Due Date for Completion" in summaryData and "B3 Agreed Due Date for Completion" in summaryData and not (summaryData["B3 Agreed Due Date for Completion"]!='') and (not (summaryData["B4 Date Completed"]!='')) and (summaryData["B3 Agreed Due Date for Completion"].astype('datetime64[ns]') < summaryData["B4 Date Completed"].astype('datetime64[ns]')).bool()):
        #                 total_late_retification += 1
        #         df2['total_late_retification'] = total_late_retification
        #     else:
        #         total_late_retification = 0
            
        #     if (not df2['contractor_rep_signed_date'].isnull().bool() and not df2['A3. Date Time'].isnull().bool()):
        #         df2['days_complete'] = (((df2['contractor_rep_signed_date'].astype('datetime64[ns]') - 
        #         df2['A3. Date Time'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
        #         if df2['days_complete'].isnull().bool() or df2['days_complete'].lt(0).bool():
        #             df2['days_complete'] = 0
        #     else:
        #         df2['days_complete'] = None
            

        #     df4=pd.DataFrame()
        #     for saftey_cat in saftey_cats:
        #         df3=df2.copy()
        #         complete = 0
        #         incomplete = 0
        #         if not df2['sup_rep_signed_date'].isnull().bool():
        #             if (len(x['data'][str(saftey_cat)[0:3].strip()+' Checklist']) > 0):
        #                 for record in x['data'][str(saftey_cat)[0:3].strip()+' Checklist']:
        #                     if record[str(saftey_cat)[0:3].strip()+' Result'] != 'N/A':
        #                         complete += 1
        #         else:
        #             if (len(x['data'][str(saftey_cat)[0:3].strip()+' Checklist']) > 0):
        #                 for record in x['data'][str(saftey_cat)[0:3].strip()+' Checklist']:
        #                     if record[str(saftey_cat)[0:3].strip()+' Result'] != 'N/A':
        #                         incomplete += 1
        #         df3['saftey_cat'] = saftey_cat
        #         df3['saftey_cat' + '_' + 'complete'] = complete
        #         df3['saftey_cat' + '_' + 'incomplete'] = incomplete
        #         df4 = df4.append(df3)
        #     df2=df2.append(df4)

        #     df = df.append(df2)
        # df.rename(columns=Mapping, inplace=True)
        # df['sup_rep_signed_date']=df['sup_rep_signed_date'].apply(pd.to_datetime)
        # df['contractor_rep_signed_date']=df['contractor_rep_signed_date'].apply(pd.to_datetime)
        # df['a3_date_time']=df['a3_date_time'].apply(pd.to_datetime)
        # df.columns = df.columns.str.replace(' ', '_').str.replace('.', '').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent').str.replace('/', '_')
        df.to_sql('safety_walk_dc202312', con=conn, if_exists='replace', index= False)
Task Instance Attributes
Attribute Value
dag_id dc202312_safety_walk
duration 1.925038
end_date 2024-09-12 05:02:54.279651+00:00
execution_date 2024-09-10T15:00:00+00:00
executor_config {}
generate_command <function TaskInstance.generate_command at 0x7f152f9bf320>
hostname 63fbafbc3109
is_premature False
job_id 214
key ('dc202312_safety_walk', 'getMongoDB', <Pendulum [2024-09-10T15:00:00+00:00]>, 3)
log <Logger airflow.task (INFO)>
log_filepath /usr/local/airflow/logs/dc202312_safety_walk/getMongoDB/2024-09-10T15:00:00+00:00.log
log_url http://localhost:8080/admin/airflow/log?execution_date=2024-09-10T15%3A00%3A00%2B00%3A00&task_id=getMongoDB&dag_id=dc202312_safety_walk
logger <Logger airflow.task (INFO)>
mark_success_url http://localhost:8080/success?task_id=getMongoDB&dag_id=dc202312_safety_walk&execution_date=2024-09-10T15%3A00%3A00%2B00%3A00&upstream=false&downstream=false
max_tries 1
metadata MetaData(bind=None)
next_try_number 3
operator PythonOperator
pid 4686
pool default_pool
prev_attempted_tries 2
previous_execution_date_success None
previous_start_date_success None
previous_ti None
previous_ti_success None
priority_weight 1
queue default
queued_dttm 2024-09-12 05:02:38.744322+00:00
raw False
run_as_user None
start_date 2024-09-12 05:02:52.354613+00:00
state failed
task <Task(PythonOperator): getMongoDB>
task_id getMongoDB
test_mode False
try_number 3
unixname airflow
Task Attributes
Attribute Value
dag <DAG: dc202312_safety_walk>
dag_id dc202312_safety_walk
depends_on_past False
deps {<TIDep(Not In Retry Period)>, <TIDep(Trigger Rule)>, <TIDep(Previous Dagrun State)>}
do_xcom_push True
downstream_list []
downstream_task_ids set()
email None
email_on_failure True
email_on_retry True
end_date None
execution_timeout None
executor_config {}
extra_links []
global_operator_extra_link_dict {}
inlets []
lineage_data None
log <Logger airflow.task.operators (INFO)>
logger <Logger airflow.task.operators (INFO)>
max_retry_delay None
on_failure_callback None
on_retry_callback None
on_success_callback None
op_args []
op_kwargs {'name': 'Dylan'}
operator_extra_link_dict {}
operator_extra_links ()
outlets []
owner airflow
params {}
pool default_pool
priority_weight 1
priority_weight_total 1
provide_context True
queue default
resources None
retries 1
retry_delay 0:05:00
retry_exponential_backoff False
run_as_user None
schedule_interval 0 15 * * *
shallow_copy_attrs ('python_callable', 'op_kwargs')
sla None
start_date 2023-01-17T00:00:00+00:00
subdag None
task_concurrency None
task_id getMongoDB
task_type PythonOperator
template_ext []
template_fields ('templates_dict', 'op_args', 'op_kwargs')
templates_dict None
trigger_rule all_success
ui_color #ffefeb
ui_fgcolor #000
upstream_list [<Task(PythonOperator): getDrowToken>]
upstream_task_ids {'getDrowToken'}
wait_for_downstream False
weight_rule downstream