DAG: dc201911_cleaning

schedule: 0 15 * * *


Task Instance: getMongoDB


Task Instance Details

Dependencies Blocking Task From Getting Scheduled
Dependency Reason
Dagrun Running Task instance's dagrun was not in the 'running' state but in the state 'failed'.
Trigger Rule Task's trigger rule 'all_success' requires all upstream tasks to have succeeded, but found 1 non-success(es). upstream_tasks_state={'total': 1, 'successes': 0, 'skipped': 0, 'failed': 0, 'upstream_failed': 1, 'done': 1}, upstream_task_ids={'getDrowToken'}
Task Instance State Task is in the 'upstream_failed' state which is not a valid state for execution. The task must be cleared in order to be run.
Attribute: python_callable
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/module/document-export/airflow/workflow/605d53f21fb4b60ca76fb242?export_type=0",
    headers={
    "x-access-token": f"Bearer {token}",
    "ICWPxAccessKey": "nd@201907ICWP_[1AG:4UdI){n=b~"
    }
    )

    RISC_Data = json.loads(response.text)
    Mapping= {
    "Inspection Date" : "a01a_inspection_date",
    # "SupD signature time": "f2_checked_by_supd_on_date",
    }

    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  

    # User name of the database server
    dbUserName            = 'dRowAdmin'  

    # Password for the database user
    dbUserPassword        = 'drowsuper'  

    # Name of the database 
    database              = 'drowDateWareHouse'

    # Character set
    port                  = "5432"

    # Character set
    charSet               = "utf8mb4"  

    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)
    
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df = pd.DataFrame()
        for x in RISC_Data:
            df_nested_list = json_normalize(x['data'])

            df2 = df_nested_list.reindex(columns=Mapping.keys())
            if len(x['ApproveLogSummary']) > 0:
                request_data = [data for data in x['ApproveLogSummary'] if data.get('statusName')=="B : RSS check"]
                if len(request_data) > 0 and 'from' in request_data[-1]:
                    df2['f2_checked_by_supd_on_date'] = request_data[-1]['from']
                else:
                    df2['f2_checked_by_supd_on_date'] = None
                if len(request_data) > 0 and 'to' in request_data[-1]:
                    df2['d4_submission_date'] = request_data[-1]['to']
                else:
                    df2['d4_submission_date'] = None
            else:
                df2['f2_checked_by_supd_on_date'] = None
                df2['d4_submission_date'] = None
                
            df2["report_name"] = df2["Inspection Date"].astype(str).str[:10]
            if len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="Z : END"])>0 or len([data for data in x['ApproveLogSummary'] if data.get('statusName')=="C : Contractor Acknowledge and Archive"])>0:
                df2['report_complete_or_incomplete'] = 'complete'
            else:
                df2['report_complete_or_incomplete'] = 'incomplete'
            if 'data' in x and isinstance(x['data'], dict):
                for key in x['data']:
                    if 'Checklist' in key:
                        total_report = 0
                        total_x = 0
                        for item in x['data'][key]:
                            for item_key in item:
                                if item[item_key] == 'N/A' or item[item_key] == '✓':
                                    total_report += 1
                                if item[item_key] == '✘':
                                    total_x += 1
                                    total_report += 1
                        df2['nc_report_item'] = total_x
                        df2['total_report_item'] = total_report

            if (not df2['f2_checked_by_supd_on_date'].isnull().bool() and not df2['Inspection Date'].isnull().bool()):
                df2['complete_time_in_days'] = (((df2['f2_checked_by_supd_on_date'].astype('datetime64[ns]') - 
                df2['Inspection Date'].astype('datetime64[ns]'))/ np.timedelta64(1, 'h'))/24).round(2)
                if df2['complete_time_in_days'].isnull().bool() or df2['complete_time_in_days'].lt(0).bool():
                    df2['complete_time_in_days'] = 0
            else:
                df2['complete_time_in_days'] = 0

            df2.rename(columns=Mapping, inplace=True)
            df = df.append(df2)
        df['a01a_inspection_date']=df['a01a_inspection_date'].apply(pd.to_datetime)
        df['d4_submission_date']=df['d4_submission_date'].apply(pd.to_datetime)
        df['f2_checked_by_supd_on_date']=df['f2_checked_by_supd_on_date'].apply(pd.to_datetime)
        df.to_sql('cleansing_dc201911', con=conn, if_exists='replace', index= False)
Task Instance Attributes
Attribute Value
dag_id dc201911_cleaning
duration None
end_date 2025-04-25 15:08:36.600477+00:00
execution_date 2025-04-24T15:00:00+00:00
executor_config {}
generate_command <function TaskInstance.generate_command at 0x7f152f9bf320>
hostname
is_premature False
job_id None
key ('dc201911_cleaning', 'getMongoDB', <Pendulum [2025-04-24T15:00:00+00:00]>, 1)
log <Logger airflow.task (INFO)>
log_filepath /usr/local/airflow/logs/dc201911_cleaning/getMongoDB/2025-04-24T15:00:00+00:00.log
log_url http://localhost:8080/admin/airflow/log?execution_date=2025-04-24T15%3A00%3A00%2B00%3A00&task_id=getMongoDB&dag_id=dc201911_cleaning
logger <Logger airflow.task (INFO)>
mark_success_url http://localhost:8080/success?task_id=getMongoDB&dag_id=dc201911_cleaning&execution_date=2025-04-24T15%3A00%3A00%2B00%3A00&upstream=false&downstream=false
max_tries 1
metadata MetaData(bind=None)
next_try_number 1
operator None
pid None
pool default_pool
prev_attempted_tries 0
previous_execution_date_success 2025-04-21 15:00:00+00:00
previous_start_date_success 2025-04-22 15:03:24.730434+00:00
previous_ti <TaskInstance: dc201911_cleaning.getMongoDB 2025-04-23 15:00:00+00:00 [upstream_failed]>
previous_ti_success <TaskInstance: dc201911_cleaning.getMongoDB 2025-04-21 15:00:00+00:00 [success]>
priority_weight 1
queue default
queued_dttm None
raw False
run_as_user None
start_date 2025-04-25 15:08:36.600460+00:00
state upstream_failed
task <Task(PythonOperator): getMongoDB>
task_id getMongoDB
test_mode False
try_number 1
unixname airflow
Task Attributes
Attribute Value
dag <DAG: dc201911_cleaning>
dag_id dc201911_cleaning
depends_on_past False
deps {<TIDep(Not In Retry Period)>, <TIDep(Trigger Rule)>, <TIDep(Previous Dagrun State)>}
do_xcom_push True
downstream_list []
downstream_task_ids set()
email None
email_on_failure True
email_on_retry True
end_date None
execution_timeout None
executor_config {}
extra_links []
global_operator_extra_link_dict {}
inlets []
lineage_data None
log <Logger airflow.task.operators (INFO)>
logger <Logger airflow.task.operators (INFO)>
max_retry_delay None
on_failure_callback None
on_retry_callback None
on_success_callback None
op_args []
op_kwargs {'name': 'Dylan'}
operator_extra_link_dict {}
operator_extra_links ()
outlets []
owner airflow
params {}
pool default_pool
priority_weight 1
priority_weight_total 1
provide_context True
queue default
resources None
retries 1
retry_delay 0:05:00
retry_exponential_backoff False
run_as_user None
schedule_interval 0 15 * * *
shallow_copy_attrs ('python_callable', 'op_kwargs')
sla None
start_date 2023-01-17T00:00:00+00:00
subdag None
task_concurrency None
task_id getMongoDB
task_type PythonOperator
template_ext []
template_fields ('templates_dict', 'op_args', 'op_kwargs')
templates_dict None
trigger_rule all_success
ui_color #ffefeb
ui_fgcolor #000
upstream_list [<Task(PythonOperator): getDrowToken>]
upstream_task_ids {'getDrowToken'}
wait_for_downstream False
weight_rule downstream