DAG: c4_financial_data

schedule: 0 0,4,8,11,16 * * *


Task Instance: getMongoDB


Task Instance Details

Dependencies Blocking Task From Getting Scheduled
Dependency Reason
Dagrun Running Task instance's dagrun was not in the 'running' state but in the state 'success'.
Task Instance State Task is in the 'success' state which is not a valid state for execution. The task must be cleared in order to be run.
Attribute: python_callable
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
def getMongoDB(**context):
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/sheets/6396d09292869a0c9a0079dc?with_records=true&fields=",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    # # print('got_data')
    sheet = json.loads(response.text)
    headers = sheet['header']
    record = sheet['record']
    dataToExtract=[]
    for d in record: 
        objectToPush = {}
        for v in d['values']:
            for c in headers:
                colNameToExtract = c['colName']
                if v['colName'] == colNameToExtract:
                    # # print(v)
                    if v.get('multValue') != None:
                        if v['multValue'] == True:
                            if v['colType'] == 'Table':
                                tObjectArray = []
                                for t in v['tableValue']:
                                    tObjectToPush = {}
                                    for s in t['subValues']:
                                        tObjectToPush[s['colName']] = s.value
                                    tObjectArray.push(tObjectToPush)
                            else:
                                objectToPush[v['colName']] = v['valueArray']
                        else:
                            if v.get('value') != None:
                                if v.get('value') == 'NA':
                                    objectToPush[v['colName']] = None
                                else:
                                    objectToPush[v['colName']] = v['value']
                            else:
                                objectToPush[v['colName']] = None
                    else:
                        if v.get('value') != None:
                            if v.get('value') == 'NA':
                                objectToPush[v['colName']] = None
                            else:
                                objectToPush[v['colName']] = v['value']
                        else:
                            objectToPush[v['colName']] = None
        dataToExtract.append(objectToPush)
    # # print(len(dataToExtract))
    # # print(dataToExtract[0].keys())
    df = pd.DataFrame.from_dict(dataToExtract)
    numerics = df.select_dtypes(include="number").columns
    df=df.apply(pd.to_numeric, errors='ignore')
    df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
    df['IP No.']=df['IP No.'].astype(str)
    df['Month - Year']=df['Month - Year'].apply(pd.to_datetime)
    df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')

    host                  = 'drowdatewarehouse.crlwwhgepgi7.ap-east-1.rds.amazonaws.com'  

        # User name of the database server
    dbUserName            = 'dRowAdmin'  

    # Password for the database user
    dbUserPassword        = 'drowsuper'  

    # Name of the database 
    database              = 'drowDateWareHouse'

    # Character set
    charSet               = "utf8mb4"  

    port                  = "5432"

    # #cursor Type
    # cusrsorType            = pymysql.cursors.DictCursor



    #create_engine('mysql+mysqldb://root:password@localhost:3306/mydbname', echo = False)
    conn_string = ('postgres://' +
                           dbUserName + ':' + 
                           dbUserPassword +
                           '@' + host + ':' + port +
                           '/' + database)

    # df = context.get("ti").xcom_pull(key="InsertData")
    # # print(df)
    # conn_string = 'postgres://user:password@host/data1'
    
    db = create_engine(conn_string)
    conn = db.connect()
    # # print('db connected')
    with conn as conn:
        df.to_sql('c04_finance_data', con=conn, if_exists='replace')
    conn.close()

    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/sheets/63fc9b864243400ca9af78bb?with_records=true&fields=",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    # # print('got_data')
    sheet = json.loads(response.text)
    headers = sheet['header']
    record = sheet['record']
    dataToExtract=[]
    for d in record: 
        objectToPush = {}
        for v in d['values']:
            for c in headers:
                colNameToExtract = c['colName']
                if v['colName'] == colNameToExtract:
                    # # print(v)
                    if v.get('multValue') != None:
                        if v['multValue'] == True:
                            if v['colType'] == 'Table':
                                tObjectArray = []
                                for t in v['tableValue']:
                                    tObjectToPush = {}
                                    for s in t['subValues']:
                                        tObjectToPush[s['colName']] = s.value
                                    tObjectArray.push(tObjectToPush)
                            else:
                                objectToPush[v['colName']] = v['valueArray']
                        else:
                            if v.get('value') != None:
                                if v.get('value') == 'NA':
                                    objectToPush[v['colName']] = None
                                else:
                                    objectToPush[v['colName']] = v['value']
                            else:
                                objectToPush[v['colName']] = None
                    else:
                        if v.get('value') != None:
                            if v.get('value') == 'NA':
                                objectToPush[v['colName']] = None
                            else:
                                objectToPush[v['colName']] = v['value']
                        else:
                            objectToPush[v['colName']] = None
        dataToExtract.append(objectToPush)
    # # print(len(dataToExtract))
    # # print(dataToExtract[0].keys())
    data= dataToExtract
    # data=[{
    #     "Month - Year": "2022-11",
    #     "Type": "Forecast of the final PWDD", 
    #     "Provisional Sum for Safety": 0,
    #     "CEs incl. Fee": 188000000,
    #     "Forecast of the final total of the Prices":2322000000,
    #     "Tendered total of the Prices":1690000000,
    #     "Price Adjustment for Inflation (PAI)":443000000,
    #     "Original Contract Value":1747000000,
    #     "Total": 2378000000
    # },
    # {
    #     "Month - Year": "2022-11",
    #     "Type": "Approved forecast total of the Prices", 
    #     "Provisional Sum for Safety":16000000,
    #     "CEs incl. Fee":177000000,
    #     "Forecast of the final total of the Prices":2322000000,
    #     "Tendered total of the Prices":1690000000,
    #     "Price Adjustment for Inflation (PAI)":265000000,
    #     "Original Contract Value":1690000000,
    #     "Total": 2148000000
    # }
    # ]
    df = pd.DataFrame.from_dict(data)
    numerics = df.select_dtypes(include="number").columns
    df=df.apply(pd.to_numeric, errors='ignore')
    df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
    # df['IP No.']=df['IP No.'].astype(str)
    df['Month - Year']=df['Month - Year'].apply(pd.to_datetime)
    # df["Provisional Sum for Safety"] = df["Provisional Sum for Safety"].apply(pd.to_numeric)
    # df["CEs incl. Fee"] = df["CEs incl. Fee"].apply(pd.to_numeric)
    # df["Forecast of the final total of the Prices"] = df["Forecast of the final total of the Prices"].apply(pd.to_numeric)
    # df["Tendered total of the Prices"] = df["Tendered total of the Prices"].apply(pd.to_numeric)
    # df["Price Adjustment for Inflation (PAI)"] = df["Price Adjustment for Inflation (PAI)"].apply(pd.to_numeric)
    # df["Original Contract Value"] = df["Original Contract Value"].apply(pd.to_numeric)
    # df["Total"] = df["Total"].apply(pd.to_numeric)
    df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df.to_sql('c04_finance_status_data', con=conn, if_exists='replace')
    conn.close()

    # data=[{
    #     "Month - Year": "2022-11",
    #     "Contract": "C4",
    #     "No. of Claims": 13,
    #     "Claimed (Days)": 237.0,
    #     "Assessed (Days)": 185.0,
    #     "Awarded (Days)": 178.0,
    #     "Awarded/Assessed": 0.9622,
    #     "Unresolved (Days)": 52,
    #     "Assessed w/o EOT": 7
    # }
    # ]
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/sheets/63fc9ef84243400ca9af7c70?with_records=true&fields=",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    # # print('got_data')
    sheet = json.loads(response.text)
    headers = sheet['header']
    record = sheet['record']
    dataToExtract=[]
    for d in record: 
        objectToPush = {}
        for v in d['values']:
            for c in headers:
                colNameToExtract = c['colName']
                if v['colName'] == colNameToExtract:
                    # # print(v)
                    if v.get('multValue') != None:
                        if v['multValue'] == True:
                            if v['colType'] == 'Table':
                                tObjectArray = []
                                for t in v['tableValue']:
                                    tObjectToPush = {}
                                    for s in t['subValues']:
                                        tObjectToPush[s['colName']] = s.value
                                    tObjectArray.push(tObjectToPush)
                            else:
                                objectToPush[v['colName']] = v['valueArray']
                        else:
                            if v.get('value') != None:
                                if v.get('value') == 'NA':
                                    objectToPush[v['colName']] = None
                                else:
                                    objectToPush[v['colName']] = v['value']
                            else:
                                objectToPush[v['colName']] = None
                    else:
                        if v.get('value') != None:
                            if v.get('value') == 'NA':
                                objectToPush[v['colName']] = None
                            else:
                                objectToPush[v['colName']] = v['value']
                        else:
                            objectToPush[v['colName']] = None
        dataToExtract.append(objectToPush)
    # # print(len(dataToExtract))
    # # print(dataToExtract[0].keys())
    data= dataToExtract
    
    df = pd.DataFrame.from_dict(data)
    numerics = df.select_dtypes(include="number").columns
    df=df.apply(pd.to_numeric, errors='ignore')
    df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
    # df['IP No.']=df['IP No.'].astype(str)
    df['Month - Year']=df['Month - Year'].apply(pd.to_datetime)
    # df["Provisional Sum for Safety"] = df["Provisional Sum for Safety"].apply(pd.to_numeric)
    # df["CEs incl. Fee"] = df["CEs incl. Fee"].apply(pd.to_numeric)
    # df["Forecast of the final total of the Prices"] = df["Forecast of the final total of the Prices"].apply(pd.to_numeric)
    # df["Tendered total of the Prices"] = df["Tendered total of the Prices"].apply(pd.to_numeric)
    # df["Price Adjustment for Inflation (PAI)"] = df["Price Adjustment for Inflation (PAI)"].apply(pd.to_numeric)
    # df["Original Contract Value"] = df["Original Contract Value"].apply(pd.to_numeric)
    # df["Total"] = df["Total"].apply(pd.to_numeric)
    df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df.to_sql('c04_eot_data', con=conn, if_exists='replace')
    conn.close()

    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/sheets/63fc9fcc4243400ca9af7dee?with_records=true&fields=",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    # # print('got_data')
    sheet = json.loads(response.text)
    headers = sheet['header']
    record = sheet['record']
    dataToExtract=[]
    for d in record: 
        objectToPush = {}
        for v in d['values']:
            for c in headers:
                colNameToExtract = c['colName']
                if v['colName'] == colNameToExtract:
                    # # print(v)
                    if v.get('multValue') != None:
                        if v['multValue'] == True:
                            if v['colType'] == 'Table':
                                tObjectArray = []
                                for t in v['tableValue']:
                                    tObjectToPush = {}
                                    for s in t['subValues']:
                                        tObjectToPush[s['colName']] = s.value
                                    tObjectArray.push(tObjectToPush)
                            else:
                                objectToPush[v['colName']] = v['valueArray']
                        else:
                            if v.get('value') != None:
                                if v.get('value') == 'NA':
                                    objectToPush[v['colName']] = None
                                else:
                                    objectToPush[v['colName']] = v['value']
                            else:
                                objectToPush[v['colName']] = None
                    else:
                        if v.get('value') != None:
                            if v.get('value') == 'NA':
                                objectToPush[v['colName']] = None
                            else:
                                objectToPush[v['colName']] = v['value']
                        else:
                            objectToPush[v['colName']] = None
        dataToExtract.append(objectToPush)
    # # print(len(dataToExtract))
    # # print(dataToExtract[0].keys())
    data= dataToExtract
    # data=[
    #     {
    #     "Programme":"1st Programme",
    #     "Submission Date": "2020-11-11",
    #     "Acceptance Date": "2020-12-4",
    #     "Programme Approval Elapsed Time (days)": 23,
    #     },
    #     {
    #     "Programme":"RP01",
    #     "Submission Date": "2021-09-20",
    #     "Acceptance Date": "2021-09-30",
    #     "Programme Approval Elapsed Time (days)": 10,
    #     },
    #     {
    #     "Programme":"RP02a",
    #     "Submission Date": "2022-01-24",
    #     "Acceptance Date": "2022-02-22",
    #     "Programme Approval Elapsed Time (days)": 29,
    #     },
    #     {
    #     "Programme":"RP03",
    #     "Submission Date": "2022-01-24",
    #     "Acceptance Date": "2022-05-12",
    #     "Programme Approval Elapsed Time (days)": 108,
    #     },
    #     {
    #     "Programme":"RP04",
    #     "Submission Date": "2022-08-22",
    #     "Acceptance Date": "2022-09-19",
    #     "Programme Approval Elapsed Time (days)": 28,
    # }
    # ]
    df = pd.DataFrame.from_dict(data)
    # numerics = df.select_dtypes(include="number").columns
    # df=df.apply(pd.to_numeric, errors='ignore')
    # df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
    # df['IP No.']=df['IP No.'].astype(str)
    df['Submission Date']=df['Submission Date'].apply(pd.to_datetime)
    df['Acceptance Date']=df['Acceptance Date'].apply(pd.to_datetime)
    # df["Provisional Sum for Safety"] = df["Provisional Sum for Safety"].apply(pd.to_numeric)
    # df["CEs incl. Fee"] = df["CEs incl. Fee"].apply(pd.to_numeric)
    # df["Forecast of the final total of the Prices"] = df["Forecast of the final total of the Prices"].apply(pd.to_numeric)
    # df["Tendered total of the Prices"] = df["Tendered total of the Prices"].apply(pd.to_numeric)
    # df["Price Adjustment for Inflation (PAI)"] = df["Price Adjustment for Inflation (PAI)"].apply(pd.to_numeric)
    # df["Original Contract Value"] = df["Original Contract Value"].apply(pd.to_numeric)
    # df["Total"] = df["Total"].apply(pd.to_numeric)
    df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df.to_sql('c04_programme_data', con=conn, if_exists='replace')
    conn.close()

# 63fca09d4243400ca9af7f84
    token = context.get("ti").xcom_pull(key="token")
    response = requests.get(
    url=f"{dRoW_api_end_url}/api/sheets/63fca09d4243400ca9af7f84?with_records=true&fields=",
    headers={
    "x-access-token": f"Bearer {token}",
    }
    )
    # # print('got_data')
    sheet = json.loads(response.text)
    headers = sheet['header']
    record = sheet['record']
    dataToExtract=[]
    for d in record: 
        objectToPush = {}
        for v in d['values']:
            for c in headers:
                colNameToExtract = c['colName']
                if v['colName'] == colNameToExtract:
                    # # print(v)
                    if v.get('multValue') != None:
                        if v['multValue'] == True:
                            if v['colType'] == 'Table':
                                tObjectArray = []
                                for t in v['tableValue']:
                                    tObjectToPush = {}
                                    for s in t['subValues']:
                                        tObjectToPush[s['colName']] = s.value
                                    tObjectArray.push(tObjectToPush)
                            else:
                                objectToPush[v['colName']] = v['valueArray']
                        else:
                            if v.get('value') != None:
                                if v.get('value') == 'NA':
                                    objectToPush[v['colName']] = None
                                else:
                                    objectToPush[v['colName']] = v['value']
                            else:
                                objectToPush[v['colName']] = None
                    else:
                        if v.get('value') != None:
                            if v.get('value') == 'NA':
                                objectToPush[v['colName']] = None
                            else:
                                objectToPush[v['colName']] = v['value']
                        else:
                            objectToPush[v['colName']] = None
        dataToExtract.append(objectToPush)
    # # print(len(dataToExtract))
    # # print(dataToExtract[0].keys())
    data= dataToExtract
    # data=[
    #     {
    #     "key Date":"KD1",
    #     "Planned Completion Date(PCD)": "2021-02-18",
    #     },
    #     {
    #     "key Date":"KD2",
    #     "Planned Completion Date(PCD)": "2024-06-04",
    #     },
    #     {
    #     "key Date":"KD3",
    #     "Planned Completion Date(PCD)": "2024-10-10",
    #     },
    #     {
    #     "key Date":"KD4",
    #     "Planned Completion Date(PCD)": "2025-04-11",
    #     },
    #     {
    #     "key Date":"KD5",
    #     "Planned Completion Date(PCD)": "2025-04-17",
    #     },
    #     {
    #     "key Date":"Section 1",
    #     "Planned Completion Date(PCD)": "2021-03-12",
    #     },
    #     {
    #     "key Date":"Section 2",
    #     "Planned Completion Date(PCD)": "2021-09-24",
    #     },
    #     {
    #     "key Date":"Section 3",
    #     "Planned Completion Date(PCD)": "2023-06-19",
    #     },
    #     {
    #     "key Date":"Section 4",
    #     "Planned Completion Date(PCD)": "2023-12-28",
    #     },
    #     {
    #     "key Date":"Section 5",
    #     "Planned Completion Date(PCD)": "2024-09-20",
    #     },
    #     {
    #     "key Date":"Section 6",
    #     "Planned Completion Date(PCD)": "2024-09-12",
    #     },
    #     {
    #     "key Date":"Section 7",
    #     "Planned Completion Date(PCD)": "2025-07-07",
    #     },
    #     {
    #     "key Date":"Section 8",
    #     "Planned Completion Date(PCD)": "2025-06-12",
    #     },
    #     {
    #     "key Date":"Section 9",
    #     "Planned Completion Date(PCD)": "2025-06-12",
    #     },
    #     {
    #     "key Date":"Section 10A",
    #     "Planned Completion Date(PCD)": "2024-06-18",
    #     },
    #     {
    #     "key Date":"Section 10B",
    #     "Planned Completion Date(PCD)": "2025-09-20",
    #     },
    #     {
    #     "key Date":"Section 10C",
    #     "Planned Completion Date(PCD)": "2026-06-12",
    #     },
    #     {
    #     "key Date":"Section 11",
    #     "Planned Completion Date(PCD)": "2025-07-16",
    #     }
    # ]
    df = pd.DataFrame.from_dict(data)
    # numerics = df.select_dtypes(include="number").columns
    # df=df.apply(pd.to_numeric, errors='ignore')
    # df[numerics]=df[numerics].apply(lambda x: np.round(x, decimals=5))
    # df['IP No.']=df['IP No.'].astype(str)
    df['Planned Completion Date(PCD)']=df['Planned Completion Date(PCD)'].apply(pd.to_datetime)
    # df["Provisional Sum for Safety"] = df["Provisional Sum for Safety"].apply(pd.to_numeric)
    # df["CEs incl. Fee"] = df["CEs incl. Fee"].apply(pd.to_numeric)
    # df["Forecast of the final total of the Prices"] = df["Forecast of the final total of the Prices"].apply(pd.to_numeric)
    # df["Tendered total of the Prices"] = df["Tendered total of the Prices"].apply(pd.to_numeric)
    # df["Price Adjustment for Inflation (PAI)"] = df["Price Adjustment for Inflation (PAI)"].apply(pd.to_numeric)
    # df["Original Contract Value"] = df["Original Contract Value"].apply(pd.to_numeric)
    # df["Total"] = df["Total"].apply(pd.to_numeric)
    df.columns = df.columns.str.replace(' ', '_').str.replace('.', '_').str.replace('(', '_').str.replace(')', '').str.replace('%', 'percent')
    db = create_engine(conn_string)
    conn = db.connect()
    with conn as conn:
        df.to_sql('c04_key_date_data', con=conn, if_exists='replace')
    conn.close()
Task Instance Attributes
Attribute Value
dag_id c4_financial_data
duration 12.701184
end_date 2025-04-26 08:01:19.434413+00:00
execution_date 2025-04-26T04:00:00+00:00
executor_config {}
generate_command <function TaskInstance.generate_command at 0x7f152f9bf320>
hostname 63fbafbc3109
is_premature False
job_id 142649
key ('c4_financial_data', 'getMongoDB', <Pendulum [2025-04-26T04:00:00+00:00]>, 2)
log <Logger airflow.task (INFO)>
log_filepath /usr/local/airflow/logs/c4_financial_data/getMongoDB/2025-04-26T04:00:00+00:00.log
log_url http://localhost:8080/admin/airflow/log?execution_date=2025-04-26T04%3A00%3A00%2B00%3A00&task_id=getMongoDB&dag_id=c4_financial_data
logger <Logger airflow.task (INFO)>
mark_success_url http://localhost:8080/success?task_id=getMongoDB&dag_id=c4_financial_data&execution_date=2025-04-26T04%3A00%3A00%2B00%3A00&upstream=false&downstream=false
max_tries 1
metadata MetaData(bind=None)
next_try_number 2
operator PythonOperator
pid 2842596
pool default_pool
prev_attempted_tries 1
previous_execution_date_success 2025-04-26 00:00:00+00:00
previous_start_date_success 2025-04-26 04:01:42.206649+00:00
previous_ti <TaskInstance: c4_financial_data.getMongoDB 2025-04-26 00:00:00+00:00 [success]>
previous_ti_success <TaskInstance: c4_financial_data.getMongoDB 2025-04-26 00:00:00+00:00 [success]>
priority_weight 1
queue default
queued_dttm 2025-04-26 08:01:04.392719+00:00
raw False
run_as_user None
start_date 2025-04-26 08:01:06.733229+00:00
state success
task <Task(PythonOperator): getMongoDB>
task_id getMongoDB
test_mode False
try_number 2
unixname airflow
Task Attributes
Attribute Value
dag <DAG: c4_financial_data>
dag_id c4_financial_data
depends_on_past False
deps {<TIDep(Not In Retry Period)>, <TIDep(Trigger Rule)>, <TIDep(Previous Dagrun State)>}
do_xcom_push True
downstream_list []
downstream_task_ids set()
email None
email_on_failure True
email_on_retry True
end_date None
execution_timeout None
executor_config {}
extra_links []
global_operator_extra_link_dict {}
inlets []
lineage_data None
log <Logger airflow.task.operators (INFO)>
logger <Logger airflow.task.operators (INFO)>
max_retry_delay None
on_failure_callback None
on_retry_callback None
on_success_callback None
op_args []
op_kwargs {'name': 'Dylan'}
operator_extra_link_dict {}
operator_extra_links ()
outlets []
owner airflow
params {}
pool default_pool
priority_weight 1
priority_weight_total 1
provide_context True
queue default
resources None
retries 1
retry_delay 0:05:00
retry_exponential_backoff False
run_as_user None
schedule_interval 0 0,4,8,11,16 * * *
shallow_copy_attrs ('python_callable', 'op_kwargs')
sla None
start_date 2022-10-24T00:00:00+00:00
subdag None
task_concurrency None
task_id getMongoDB
task_type PythonOperator
template_ext []
template_fields ('templates_dict', 'op_args', 'op_kwargs')
templates_dict None
trigger_rule all_success
ui_color #ffefeb
ui_fgcolor #000
upstream_list [<Task(PythonOperator): getDrowToken>]
upstream_task_ids {'getDrowToken'}
wait_for_downstream False
weight_rule downstream